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Abstract 

Anomaly detection methods have a great potential to assist the detection of diseases in animal production systems. 
We used sequence data of Porcine Reproductive and Respiratory Syndrome (PRRS) to define the emergence of new 
strains at the farm level. We evaluated the performance of 24 anomaly detection methods based on machine learn‑
ing, regression, time series techniques and control charts to identify outbreaks in time series of new strains and com‑
pared the best methods using different time series: PCR positives, PCR requests and laboratory requests. We intro‑
duced synthetic outbreaks of different size and calculated the probability of detection of outbreaks (POD), sensitivity 
(Se), probability of detection of outbreaks in the first week of appearance (POD1w) and background alarm rate (BAR). 
The use of time series of new strains from sequence data outperformed the other types of data but POD, Se, POD1w 
were only high when outbreaks were large. The methods based on Long Short‑Term Memory (LSTM) and Bayes‑
ian approaches presented the best performance. Using anomaly detection methods with sequence data may help 
to identify the emergency of cases in multiple farms, but more work is required to improve the detection with time 
series of high variability. Our results suggest a promising application of sequence data for early detection of diseases 
at a production system level. This may provide a simple way to extract additional value from routine laboratory analy‑
sis. Next steps should include validation of this approach in different settings and with different diseases.

Keywords Outbreak detection, machine learning, regression, control chart, surveillance, epidemics, production 
system, animal health

Introduction
Animal diseases are responsible for annual production 
losses estimated at more than 20% [1], as well as millions 
of expenditures in disease control [2]. Thus, to minimize 
animal and economic losses, proactive approaches 
focused on prevention, monitoring and early intervention 
are vital and strongly encouraged to maintain the 
sustainability of the livestock sector [3]. Several efforts 
have attempted to implement systems for the timely 
detection of outbreaks in both human and animal health 
[4–7]. This may be accomplished by monitoring real-
time or near-real-time, time series of parameters that 
are indicative of the presence of disease (e.g., mortality, 
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occurrence of clinical signs or laboratory results) [8]. 
In this context, a disease outbreak can be understood 
as an anomaly in the normal disease background 
(either absence or endemic presence of a disease) of the 
population. For example, syndromic surveillance (SyS) 
uses non-specific, prediagnostic health parameters such 
as clinical signs or other indirect indicators of disease 
(mortality, decrease in animal production, etc.) to detect 
disease events [4, 8–10] This approach has proven to be 
cost-effective and has been increasingly applied in animal 
health in the last decade [4, 5, 11].

Alternatively, laboratory results can be used to monitor 
the temporal patterns of specific pathogens [12]. The use 
of these data for monitoring is not without limitations 
in terms of data availability, population coverage, and 
timeliness [5], but can be helpful when dealing with 
groups of farms affected by specific diseases. Some 
livestock sectors, such as swine production, are highly 
integrated systems. In these, individual farms have an 
agreement with a corporation in which individual farms 
provide facilities and personnel, but the animals are 
owned by the corporation, which in turn is responsible 
for providing food, meds, veterinary services, and 
technical advice. Therefore, farms under the same 
integrating corporation or production system are 
usually highly connected (e.g., through feed trucks or 
animal movements), which facilitates the rapid spread 
of diseases. Therefore, if we can detect outbreaks in the 
system early, we can prevent the spread of diseases into 
naïve farms in the same system.

To monitor anomalies and detect outbreaks different 
laboratory data can be used, e.g., positive results, 
laboratory requests, etc. However, these data may 
have limitations for detecting outbreaks in endemic 
scenarios, since case counts may be the result of the 
endemic presence of a pathogen and not a disease 
emergency. In this situation, sequencing is useful to 
differentiate new strains from those already circulating 
and, therefore, to distinguish between endemic or 
epidemic scenarios. The combination of time series 
of sequencing data with anomaly detection methods 
could help detect the emergence of new strains 
in a production system and prevent their further 
spread through farms in the system. However, these 
approaches have not been extensively explored as 
there are two traditional main limitations: the limited 
use of sequencing in livestock productions, and the 
lack of development of anomaly detection methods 
for this type of data. Regarding the first one, the use of 
sequencing has increased significantly in recent years, 
especially for certain diseases of economic importance 
such as Porcine Reproductive and Respiratory Disease 
(PRRS) [13]. This is a viral disease associated to large 

losses (more than $600 million a year in the USA alone 
[14]), with no pathognomonic signs, and endemic 
in most major pork-producing countries. Porcine 
Reproductive and Respiratory Disease virus (PRRSV) 
has a high viral mutation rate, it can reassort with 
vaccine strains, and commercial vaccines may not 
fully protect against new strains [15, 16]. This can lead 
to a rapid emergence of new strains from inside or 
outside the farm. Therefore, routine sequencing of PCR 
products is increasingly requested to assess whether a 
farm is experiencing the presence of a novel wild-type 
strain, a vaccine strain, or an endemic strain. Indirectly, 
this provides a source of sequenced data that could be 
used for anomaly detection [14].

In order to apply anomaly detection methods to 
sequenced data, it is also necessary to evaluate their 
performance. We can find a vast number of anomaly 
detection methods applied to different surveillance 
systems [17, 18]. In general, the most common anomaly 
detection methods can be mainly grouped into (i) 
regression models, using modifications of the Serfling’s 
approach [19]; (ii) time series analysis: Holt-Winters 
exponential smoothing (HW) or Autoregressive 
Integrated Moving Average models (ARIMA); and (iii) 
detection algorithms inspired by statistical process 
control methods or control charts (SCC): Shewhart 
charts, Early Aberration Reporting System (EARS), 
Cumulative Sums (CUSUM) or Exponential Weighted 
Moving Average (EWMA). Various studies have 
attempted to assess the selection of a method, but 
the performance of each of them can be very variable 
depending on the situation [8, 20]. Several factors related 
to the characteristics of the time series (frequency, 
variance, secular trends, seasonalities, length of baseline 
data, etc.), distribution of data or characteristics of the 
epidemic (e.g., amplitude, duration, and diversity of the 
outbreaks) may compromise the accuracy of a method. 
The choice of the specific algorithm must also consider 
the specific type of data and surveillance objectives [4, 8, 
17, 20]. Moreover, statistical methods may require human 
intervention to correctly parameterize each time series, 
which may not be an easy task [21]. From a practical 
point of view, an adaptable algorithm that does not need 
constant human supervision would be more desirable 
as today’s surveillance systems are usually automated 
[5, 22]. In this regard, machine learning approaches 
may offer more adaptive and robust anomaly detection 
systems by learning from the available data. However, 
even though machine learning has been successfully 
applied to the detection of anomalies in diverse types of 
times series, including space shuttle or power demand 
[23]; the application of these approaches in animal health 
surveillance is currently limited.
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In this study we aim to evaluate the use of sequence 
data for early detection of disease using anomaly 
detection methods. To our knowledge, this has not been 
attempted before with this type of data. Thus, we first 
evaluated the performance of 24 anomaly detection 
methods to detect outbreaks in time series of new strains 
defined from sequence data. Then, in order to compare 
the gain of using sequence data, we selected the best 
methods in this evaluation to compare their performance 
using other types of data: positive PCR counts, PCR 
requests counts and laboratory requests counts. For 
illustration purposes, we used PRRSV sequences and 
laboratory data from a large swine production system in 
the US. With this, we expect to provide a picture of the 
different capabilities of anomaly detection in sequence 
data to the early detection of disease.

Materials and methods
Data collection
We collected 63  671 individual laboratory records 
consisting of sample submissions for different types 
of analysis (ELISA, PCR, sequencing, etc.) for PRRSV. 
Submissions were made between 2016 and 2020 by a 
vertically integrated swine production system in which 
PRRS is endemic. Data were recorded on the Disease 
BioPortal platform [24], which presents different 
functionalities for the management and analysis of animal 
health data. The production system is made up of sites 
dedicated to different operations: breeding/gestation, 
farrowing, nursery, wean-to finish, farrow-to-finish, etc.; 
located in the United States. Farm names, locations, 
and characteristics are not provided for confidentiality 
reasons.

Data management
We aggregated the individual laboratory records by 
week and farm to create a time series of counts of the 
number of farms that requested at least one diagnosis 
of PRRS of any type, each week (n = 10  103 weekly 
laboratory requests). The result was a time series 
composed of 209 weeks from 2016 to 2020. We chose a 
weekly aggregation because the volume of diagnostic 
data generated in a production system is not usually 
high on a daily basis. Furthermore, weekly aggregation 
has demonstrated good performance in previous studies 
[25]. Next, we filtered the time series by the farms that 
requested PCR analysis (n = 5798 weekly PCR requests 
farms). We then filtered this time series to count 
those farms that tested positive to PCR in at least one 
individual sample (n = 1995 weekly PCR positives farms).

Finally, among the counts of positives, 928 submissions 
had sequence information and were used to assess the 
novelty of a sequence in each farm and construct a time 

series of new strains. We considered that a sequence 
represents a new strain in a farm when the following 
criteria were met: (i) the sequence was different from a 
previously sequenced strain from the same farm; and 
(ii) the sequence was different from vaccine strains. 
The differences between strains were analyzed by 
phylogenetic analysis using the neighbor joining method. 
We included all the obtained field strains in it as well as 
reference sequences for the following vaccines: Ingelvac 
PRRS ATP (Boehringer Ingelheim, Germany), Ingelvac 
PRRS MLV (Boehringer Ingelheim, Germany), Fostera 
PRRS (Zoetis, USA) and Prime Pac PRRS (MSD, USA). 
The analysis was performed using the correspondent tool 
available in the Disease BioPortal. To consider a sequence 
different, it must have presented a distance greater than 
0.03 from previous strains or from vaccine strains. We 
established this value as a threshold, as it is commonly 
used in previous studies to identify new PRRSV field 
isolates [26]. In each week we counted a farm as positive 
to a new strain when the farm presented at least one new 
wild-type sequence in that week. This resulted in the 
detection of new strains in 751 PCR-positive farm weekly 
submissions out of 928.

In consequence, we obtained four different time series 
of counts: laboratory requests (i.e., counts of any type 
of diagnostic requested to detect PRRSV or antibodies), 
PCR requests, PCR positives and new strains (Figure 1).

Anomaly detection algorithms and outbreak simulation
We conducted a comprehensive review of anomaly 
detection methods used for human and animal health 
surveillance in the literature and ultimately included 
24 methods in this evaluation. The characteristics, 
family type, thresholds, and tuning parameters of 
each method are shown in Tables 1, 2 and 3 along with 
the abbreviations used in this paper and the software 
and functions used to run each model. The types of 
the methods we used were: regression (Farrington’s 
algorithm (far), improved Farrington’s algorithm (farflex), 
negative binomial regression (breg)), machine learning 
(Long Short-Term Memory (LSTM) (lstm)), Bayesian 
approaches (bay1–3), time series methodologies (ARIMA 
(ari_g/ng) and HW (hw_g/ng) and SCC algorithms (RKI 
algorithm (rki1–3), EARS algorithm (ears1–3), CUSUM 
and Shewhart charts with different pre-processing 
techniques (lstm_c/s, breg_c/s, far_c/s) and EWMA 
(ewma)). We present more information about the general 
principles of each type of method evaluated in the 
Additional file 1.

The performance of the algorithms was evaluated by 
generating and injecting synthetic outbreaks into the 
time series as described previously [27]. A synthetic 
outbreak was composed of a set of consecutive weeks 
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in which synthetic cases were added to the original time 
series of counts. The outbreak size was defined as the sum 
of the cases in the synthetic outbreak, so it is made up of 
the original counts plus the added synthetic cases.

A synthetic outbreak was created using three param-
eters: the number of synthetic cases, the number of con-
secutive weeks that will constitute the outbreak and the 
distribution of the synthetic cases in those weeks. The 
synthetic outbreaks generation and injection process 
consisted of: (1) We randomly selected 1 week from the 
last 52  weeks of the time series (test region) (Figure  2). 
That week was considered the beginning of the outbreak. 
(2) We generated the total number of synthetic cases that 
composed the outbreak. This was done using a Poisson 
random variable of mean equal to k times the standard 
deviation of the baseline window, the first 157 weeks of 
the analysis window of the time series (Figure 2). (3) The 
synthetic cases were distributed in time following a log-
normal distribution (mean = 0; standard deviation = 0.5) 
[27]. (4) Finally, the synthetic cases were summed to 
the original time series starting in the week selected at 
the step 1 and distributed according to the distribution 
obtained in the step 3.

This outbreak generation process creates randomness 
in the week of the beginning of the outbreak, in the 
duration of synthetic outbreaks, and in the number of 
synthetic cases that compose the synthetic outbreak. This 
is intended to represent the variability of an outbreak in 
field conditions. The size and duration of outbreaks are 
modulated by the parameter k, so that increases in k 
increase the number of cases and length of the outbreak. 
Thus, to explore the ability of each algorithm to detect 
outbreaks of different magnitude, we used different 
values of k: 4, 8, 12, 16 and 20. Our intention was simply 
observing the trends of the behavior of the algorithms, so 

the selection of these k values was arbitrary. The variation 
in number of synthetic cases added and duration of 
outbreak by k value are showed in Additional files 2 and 
3.

Analytical approach and anomaly detection algorithm 
evaluation
We analyzed the 209-week time series in a rolling 
analysis window of 161 weeks composed of two parts: 
a 157-week baseline window, used as reference for the 
algorithms; and a 4-week test window, in which the 
algorithms tested for any anomaly. This interval of 
4  weeks was chosen since it is considered that PRRS 
virus may spread to all production stages and pro-
duce clinical outbreaks in about 2–3 weeks [28], so we 
expected this period to be enough to observe an out-
break of PRRS. We repeated the analysis moving the 
analysis window 1  week forward each time until com-
pleting the whole time series (Figure  2) (49 steps). 
The analysis was repeated in 1000 iterations for each 
anomaly detection method and k value. Each iteration 
consisted of a generation and injection of the synthetic 
cases in the testing region as described before, followed 
by the rolling analysis of the 49 analysis windows to 
evaluate if the algorithm was able to detect the injected 
outbreak. In addition, we considered the inclusion of 
a guard band of 4 weeks between the baseline window 
and the test window (Figure  2) (45 steps in this case). 
The guard band is not evaluated, but it creates a gap 
between the training and the test windows to avoid the 
contamination of the baseline window with a potential 
early phase of an outbreak [29]. Each anomaly detec-
tion method was evaluated with and without this guard 
band. However, for simplicity, we only presented results 
of methods with a guard band in the “Results” section 

Figure 1 Time series of the weekly counts (2016–2020) of new strains of PRRSV, PCR positives, PCR requests and laboratory requests in 
the production system. 
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when the addition of the guard period caused a sub-
stantial change in the results (more than 5% of variation 
in any performance measure).

We used the term signal to denote the individual 
weeks with synthetic cases that composed the synthetic 
outbreak, and the term alarm to refer a detected 
anomaly i.e., when the number of cases crossed the 
threshold determined by an anomaly detection method. 
The outbreak was considered detected if an alarm was 
generated at least once between the start and the end 
of an outbreak [27]. The performance of the algorithms 
was evaluated using four measures:

– Sensitivity (Se), which refers to the percentage 
of the sum of all the signals detected by the 
method over the sum of total signals injected in 
all the iterations, i.e., detections in each week 
with true outbreaks. This measures the ability of 
the algorithm to detect all the anomalies. It is an 
observation-based sensitivity.

– Probability of detection (POD), which is the 
percentage of outbreaks detected of all the 
iterations. This measures the ability of the 
algorithm to detect at least one anomaly for each 
outbreak and thus identify the outbreak. It is an 
event-based sensitivity.

– Probability of detection in the first week (POD1w), 
which is the proportion of the detected outbreaks 
in which the alarm occurred in the first week, i.e., 
how many outbreaks are detected in the first signal. 
This measures the timeliness of the algorithm.

– The background alarm rate (BAR), which is the pro-
portion of alarms triggered in weeks with no syn-
thetic outbreaks. We used this parameter instead 
of specificity because there was no information 
available about the real occurrence of outbreaks in 

the production system [30]. Thus, the calculation 
of specificity is not possible since we cannot rule 
out that natural outbreaks may be present in the 
observed data.

In order to have a metric that provided a general 
measure of the overall performance of the methods, we 
defined an overall score:

Comparison of anomaly detection performance with time 
series made with other data
After evaluating the time series of new strains with the 24 
anomaly detection methods, we selected those methods 
that performed the best to use them with the other 
three time series created in our data management flow 
(PCR positives, PCR requests and laboratory requests 
(Figure 1)). This allowed us to compare the performance 
of the algorithms in different scenarios and explore the 
value of using sequenced data to detect outbreaks.

The methods we selected were the best method for each 
of the parameters POD, Se and POD1w; and the three 
methods that presented the best overall score (Figure 4), 
ensuring that they were methods of different types 
(machine learning, regression, etc.). We repeated the 
same analytical methodology described in the previous 
section with each time series using the selected anomaly 
detection methods. Each synthetic outbreak was created 
using the standard deviation of the correspondent time 
series and we calculated the same performance measures.

Software and code
The different anomaly detection methods were run with 
packages freely available for the statistical software R v. 
4.1.1, except LSTM, which was run in Python v. 3.8.8. 

Overallscore = POD+ Se+ POD1w

Table 2 Anomaly detection methods evaluated based on time series techniques, criteria to detect outbreaks and tuning 
parameters. 

Name Method 
abbreviation

Threshold Software/references Parameters

Holt‑Winters exponential smoothing 
with (hw_g) and without guard‑band 
(hw_ng)

hw_g
hw_ng

Two 
times the standard 
deviation 
of the residuals

Implemented in R using the package 
forecast [60]

(additive, none, none)

ARIMA with (ari_g) and withoutt guard‑
band (ari_ng)

ari_g
ari_ng

Two 
times the standard 
deviation 
of the residuals

Implemented in R using the package 
tscount [61]. We evaluated the need 
of a previous differencing step. To select 
the adequate parameters for the ARIMA 
models, we ran models with all the possible 
combinations for the ARMA parameters 
from zero to four, and selected the best 
model based on the Aikake’s information 
criterion

ar = 4;
d = 0;
ma = 1
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The names of the packages used for each method are 
detailed in Tables 1, 2 and 3. The Additional file 4 shows 
the functions we implemented for the evaluation in roll-
ing windows and can be used with a sample of the data 
(Additional file 5) and can be used with other data sets. 
Also, the specific anomaly detection algorithms used in 
this paper are also provided in Additional file 6 to be run 
with the Additional file 5 or with other data following the 
instructions presented along the document.

Results
Evaluation of anomaly detection methods using time 
series of new strains from sequence data
The weekly behavior of the time series of new strains 
is showed in Figure  2. An irregular seasonal pattern 
was observed with an increase in the number of counts 
during the autumn–winter. Moreover, an important 
change in the trend at the beginning of 2017 was 
observed along with a high variability between weeks 
(SD = 3.6) (Figure  2). The number of farms with new 
strains in each week ranged from zero to 22 throughout 
the series, with a mean of 3.6 cases and a median of 2.0 
per week. Regarding the simulated outbreaks, after 1000 
iterations the mean durations were 2.0, 2.5, 3.0, 2.8 and 
2.9 weeks, respectively for k = {4, 8, 12, 16, 20}. The peak 

occurred on average at 1.4, 2.0, 2.3, 2.5 and 2.6  weeks, 
respectively, after the beginning of the outbreak and the 
maximum numbers of cases injected in the total duration 
of the synthetic outbreak were 7.6, 10.3, 11.6, 13.2 and 
14.2 on average.

The values of each performance measure for each 
anomaly detection method are detailed in Figure 3. The 
standard error was lower than 2% for each parameter. For 
most of the methods, the values began to exceed 50% of 
POD, Se and POD1w when k > 12. Regarding POD, the 
performance was generally poor when k was low (k < 12), 
but it was good in large outbreak sizes. For example, 
when k = 12, 9/24 (37.5%) of the methods presented a 
value over 60% and this performance notably improved 
as k increased: e.g., 13/24 (54.2%) when k = 16 and 17/24 
(70.8%) when k = 20 (Figure  3); and more than 50% of 
the methods presented a POD higher than 70.0% when 
k = 16 (Table  4). The best methods to detect outbreaks 
were based on LSTM and Bayesian approaches. CUSUM 
also performed well, but only when LSTM was used in 
pre-processing. Sensitivity was generally low though it 
improved as k increased (Table 4). The methods based on 
CUSUM, (regardless the pre-processing method), LSTM 
and Bayesian approaches presented the best values. For 
most of the methods analyzed, POD1w was already 

Figure 2 Scheme of the evaluation process for each anomaly detection method using the time series of the weekly counts of new strains 
of PRRSV in the production system as example. (1) The complete time series consisted of 209 weeks divided into a training region (157 weeks) 
and a test region (52 weeks). (2) At each iteration, a synthetic outbreak was randomly injected into the test region. (3) For each iteration, the analysis 
was performed in rolling windows of 161 weeks divided into 157 weeks for the baseline window and 4 weeks for the test window. The analysis 
was repeated pushing the 161‑week window forward 1 week until the last week of the test window reached week 209 (49 steps). The process 
of injection of synthetic outbreaks and subsequent rolling analysis was repeated in 1000 iterations for each algorithm. The evaluation was made 
with and without a 4‑week guard band between the baseline window and the test window.
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higher than 50% for values at k = 8 (12/24; 50% of the 
methods), indicating a moderate overall ability of these 
methods to detect outbreaks early. Finally, BAR values of 
different k are averaged since they are approximately con-
stant for each k value. BAR values were lower than 16% 
for all methods with a median of 6.0, and lower than 10% 
for 20/24 methods (83.3%) (Figure  2). The higher num-
bers of false alarms were found in some of the methods 
that had a high detection capacity in other parameters 
(e.g., lstm_c, rki1, rki2, bay1 and bay2).

When considering POD, Se and POD1w together, the 
bay (1–3), rki (1–3) and LSTM-based methods generally 
presented the best overall scores (Figure 4), followed by 
breg, which presented an intermediate performance in all 
the parameters (Figure 3). In contrast, methods based on 

times series techniques and ears3 presented a substantial 
worse performance.

Despite conducting all the analysis with and without 
guard band, the addition of a 4-week guard band did 
not substantially change the performance of most of the 
methods under evaluation. For simplicity, only ARIMA 
and HW are showed in Figure 3, because they were the 
only ones that did improve their performance when a 
guard band was added, though they were not among the 
best methods for any parameter.

Comparison with other anomaly detection on different 
types of data
Time series of PCR positives and requests presented 
a rather similar profile with time series of new strains, 

Figure 3 Results of the performances measures of the 24 anomaly detection methods evaluated for A: probability of detection (POD); B: 
sensitivity (Se); C: probability of detection in the first week (POD1w) and D: background alarm rate (BAR), for each level of outbreak size 
(k). Methods are ordered from higher to lower at k = 20. For BAR values of different k are averaged since they are approximately constant for each k 
value. The color of labels indicates the general type of method: yellow: machine learning; dark green: regression; orange: time series methodology; 
red: Bayesian; black: control chart.

Table 4 Minimum–maximum and median of the performance measures (expressed in %) of the 24 anomaly detection 
methods for the probability of detection (POD), sensitivity (Se), probability of detection in the first week (POD1w) and 
background alarm rate (BAR) for each value of the parameter k in the time series of new strains. 

Performance measure Minimum–maximum (median)

k = 4 k = 8 k = 12 k = 16 k = 20

POD 0–38.0 (10.0) 0–57.0 (24.0) 0–89.0 (42.5) 4.0–94.0 (70.0) 8.0–100 (94.5)

Se 0–21.0 (7.2) 0–26.8 (11.8) 0–55.9 (24.3) 1.3–70.9 (35.6) 1.3–84.0 (43.3)

POD1w 0–21.5 (15.9) 0–72.0 (51.9) 0–78.9 (54.5) 0–86.9 (70.1) 0–95.9 (77.3)

BAR 1–16 (6)
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but laboratory requests diverged, especially after 2018 
(Figure 1). Standard deviations were progressively higher 
compared to the time series of new strains (3.6 vs 5.5, 
11.5 and 22.6, for PCR positives, PCR requests and 
laboratory requests, respectively) and so the median of 
counts in each time series (2 vs 8, 27, and 43).

Based on the results with time series of new strains, 
we selected lstm, lstm/c, lstm/s, bay2 and breg and tested 
them with the other time series. The results of the com-
parison are presented in Figure  5. In general, detection 
using sequence data to define new strains performed 
better than using the other types of data. Differences 
between new strains and PCR positives were not high, 
but performance was generally worse when using PCR 
or laboratory requests (Figure 5). For example, at k = 12, 
the average POD, Se and POD1w were 68.6, 34.9 and 51.3 
using sequences; 58.4, 32.6 and 56.4 using PCR positives; 
43.5, 19.9 and 47.7 using PCR requests; and 6.2, 6 and 
21.4 using laboratory requests, with average BAR val-
ues of 9.0, 11.1, 11.5 and 9.4, respectively. Regarding the 
methods, breg and lstm showed a balanced performance, 
although the latter presented too high BAR values when 
working with PCR and laboratory requests (Figure  5). 

The algorithm bay2 systematically presented the higher 
ability to detect outbreaks and signals, but also showed 
very elevated BAR values (more than 10% with all the 
times series).

Discussion
We present here a systematic evaluation of 24 anomaly 
detection methods using sequence data and compare 
their performance regarding the use of different types 
of data. This is, to the best of our knowledge, the most 
comprehensive comparison of anomaly detection 
methods applied to sequence data in livestock to date. 
The study was designed based on weekly surveillance 
since livestock production systems usually do not collect 
diagnostic data daily. Aggregation in weeks also has 
additional advantages since typical sources of biases of 
time series, such as the “day of the week” or the “holiday” 
effect [30] do not need to be taken into account [25, 
31]. As a drawback, responses can take up to a week. 
However, since not all risk events occur on a daily basis 
(e.g., food deliveries or animal shipments), weekly data 
still provides adequate time for necessary interventions 
at the production system level. The evaluation of 
anomaly detection algorithms in health sciences has 
been performed on real datasets [32], simulated datasets 
[33–35] or, as in our study, on real time series for which 
simulated outbreaks were added [36–38]. Simulated 
datasets offer more control of how different time series 
attributes might affect the detection ability of algorithms 
[39], but they also make assumptions that could deviate 
from the reality and affect the validity of the inferences. 
Real background data allow assessing the performance 
of the algorithms since they include the relevant features 
that may be present in real datasets (irregular shapes, 
trend changes, etc.) [12, 36, 38].

The ability to detect outbreaks and signals of most of 
the methods was good when the k parameter increased, 
as previously observed [36]. However, while POD was 
high when k > 12, the detection of outbreaks was less 
than 50% at lower outbreak sizes. It must be noted that 
k > 12 implied the addition of more than seven cases in 
the entire outbreak period (Additional file 2), which may 
represent the beginning of a significant problem in the 
system. The worse performance at low k values could be 
explained by the wide variation observed in the baseline 
data. In general, outbreaks are easier to detect when the 
incidence and variation of baseline cases are low relative 
to the outbreak cases [40]. Regarding Se, the values were 
generally low, suggesting that most alarms were triggered 
when cases were high enough to be differentiated from 
the background noise. However, even though several 
signals went undetected, this circumstance did not result 
in major problems of timely detection as POD1w was 

Figure 4 Overall performance of the 24 anomaly detection 
methods: sum of the probability of detection (POD), sensitivity 
(Se) and probability of detection in the first week (POD1w) 
for each level of outbreak size (k) and background alarm rate 
(BAR) in time series of new strains. For BAR values of different k 
are averaged since they are approximately constant for each k value. 
Color and size are proportional to values. Labels of each method 
are presented in different color depending on the type of method: 
yellow: machine learning; dark green: regression; orange: time series 
methodology; red: Bayesian; black: control chart.
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generally high. Thus, large outbreaks could be detected 
early by various methods with reasonable efficiency. 
Regarding BAR, previous studies recommend that false 
alarm rates are fixed at 3% [41] but most of the evaluated 
methods gave us values just slightly higher, around 
5% (Figure  3). Therefore, the presence of false alarms 
was not considered a big issue. However, some of the 
methods with higher capability of detection (bay1–3 or 
lstm_c) also presented too high BAR values. It also must 

be noticed that, since we did not have information about 
the presence of outbreaks in the observed data, some 
of the alarms triggered in weeks in which no synthetic 
cases were added could be real outbreaks, which could 
imply a certain overestimation of BAR. We preferred this 
approach since identifying real outbreaks is challenging 
even when information is available, as the proper 
calculation of specificity requires determining the precise 
onset dates [42].

Figure 5 Comparison of the performance measures: probability of detection (POD), sensitivity (Se), probability of detection in the 
first week (POD1w) and background alarm rate (BAR); for each level of outbreak size (k) of the selected anomaly detection methods in 
time series of new strains, PCR positives, PCR requests and laboratory requests. The color of labels indicates the general type of method: 
dark green: regression; red: Bayesian; yellow: machine learning; black: control chart. For BAR values of different k are averaged since they are 
approximately constant for each k value.
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Most of the approaches typically used in SyS have 
focused on regression or SCC [5, 42], but we did not 
find them to have great overall performance in our 
study, even when different time series were analyzed 
(Figure  5). In the case of regression, the difficulty 
of meeting the necessary assumptions about data 
distribution and independence of observations could 
contribute to this low performance. Also, our models 
considered the effects of trends and seasonality as 
constant over time, and that may worsen the accuracy 
of the models, as biosurveillance data often have a 
substantial temporal structure [39] and fluctuations 
(e.g., due to a change in government policies, laboratory 
demands or introduction of a new strain). This issue 
could be attempted to overcome by implementing an 
automatic selection of possible distributions from a 
list [43], or by using more complex approaches such as 
adaptive regression [37], time-varying autoregressive 
parameters [44], etc. However, choosing the best 
regression model in these situations would require 
more user experience. ARIMA methods are alternatives 
to address the lack of independence of observations 
by modelling autocorrelation, but we found very low 
values for most of the parameters of detection with 
these models (< 25%). They were also the only ones that 
improved by adding a guard band, which may suggest 
overfitting problems. Furthermore, ARIMA and 
derivatives demand experienced human supervision 
to identify components, making their use difficult for 
automatized applications [17, 45]. Thus, our results 
suggest that other alternatives may be explored before 
applying ARIMA methods.

Regarding SCC, EARS methods have been widely 
used in surveillance due to practical advantages such as 
working with short historical data available [5] and ease 
of computation, but they are generally outperformed 
by other SCC or regression-based methods [36], as it 
was found in our study. The other SCC methods are 
very sensitive to the temporal structure of a time series 
(trends, seasons, “day of week”, etc.) so, it is necessary 
to preprocess the data to obtain a stationary time series 
[25]. We used different methods of pre-processing and 
fed CUSUM and Shewhart algorithms with the residuals, 
finding that LSTM pre-processing generally provided 
better results. CUSUM methods (lstm_c, far_c and 
breg_c) generally worked better in terms of Se, but POD 
was only good in large outbreaks (i.e., > 75% when k > 12) 
when LSTM was used for pre-processing and did not 
perform well in terms of timeliness and BAR. CUSUM 
tends to work better detecting sustained changes even 
if they are smaller [46, 47]. Finally, EWMA is a mixture 
of SCC and smoothing technique and a superiority in 
detecting slow shifts in the process mean is expected 

[6]. However, in our case the performance was in the 
middle suggesting that other methods could be better 
alternatives.

When the overall score was assessed, LSTM showed 
better potential to report anomalies along with Bayesian 
approaches and rki (Figure 4). Machine learning methods 
such as LSTM may be better to identify hidden patterns 
in complex data in  situations with no clear trends or 
non-linearity [48], as we have observed in our study. 
The algorithms based on Bayesian approaches (bay1–3) 
presented high values for POD, Se and POD1w compared 
to most of the other methods, which is consistent with 
other studies that compared Bayesian methods with 
other statistical approaches [35, 42]. However, some of 
these methods (lstm_c, rki1–2, and bay1–2) presented 
high BAR values, which hinders their practical use, and 
even in the anomaly detection methods that performed 
better, a higher capability of detection would also be 
desirable.

The novelty of our approach lies in the use of a very 
specific source of data, sequences, instead of clinical signs 
or non-specific indicators, which are typically used in SyS 
[5]. Surveillance schemes based on laboratory results may 
also be of great benefit in guiding early control through 
disease-specific interventions [12, 49]. For example, 
in the context of PRRSV, surveillance based on pre-
diagnostic signs may not be very effective, as the typical 
signs of disease (e.g., abortions, stillbirths, respiratory 
disease, slow growth rates, lethargy, anorexia, etc.) are 
nonspecific and are shared with other diseases that may 
also be endemic in the population. As routine sequencing 
is increasing in swine production systems in several 
countries, monitoring, and detection of anomalies can 
be relatively inexpensive and simple, taking advantage of 
data already collected. According to our results, the main 
limitation is a low capability of detection when the size 
of the outbreak is small. However, at production system 
level, small outbreaks mean that few farms are involved, 
so their non-detection, although undesired, may be more 
tolerated since these emergencies are not posing a great 
threat to the entire system. Thus, the approach evaluated 
in this study still could be useful to alert of situations of 
multiple emergences in farms. This may serve as an early 
indication to trigger enhanced control measures in the 
production system, for example, increasing surveillance 
and better tracking of the movement of infected animals 
between farms and the introduction of vehicles, fomites, 
or aerosols, etc. [50–52].

Compared to using other types of data, monitoring 
sequences to detect new strains generally performed 
best. Only using time series of PCR positives performed 
similarly. In the system considered in this study 
sequencing results can be obtained within a week, but in 



Page 13 of 15Díaz‑Cao et al. Veterinary Research           (2023) 54:75  

other systems waiting times can be longer, which could 
compromise the timeliness of the method. Since the 
performance measures between PCR positive and new 
strains were quite similar, the former may be used as a 
first alarm while waiting for sequencing results or when 
results are not provided promptly. In contrast, anomaly 
detection with PCR and laboratory requests resulted less 
helpful. In these cases, the evaluated methods performed 
notably worse: lower POD and Se and extremely high 
BAR in some cases (e.g., bay2) (Figure  5). Furthermore, 
the use of these data sources does not present significant 
practical advantages since PCR results can be rapidly 
available. Interestingly, POD and Se were lower in those 
time series that presented higher SD, so the lack of 
detectability may be explained because the synthetic 
cases are masked by the high background noise, and 
so large injections are required to trigger alarms. Some 
methods also presented high POD1w, despite low POD 
and Se, but this is likely an artifact due to the low values 
of POD favoring extreme values. Approaches based on 
requests or other unspecific parameters would likely 
require of more complex approaches or higher outbreaks 
to be able to detect anomalies among the noise. On the 
contrary, if they are properly designed, they would allow 
an earlier detection due to the waiting until diagnosis is 
not necessary. In this regard, other studies have showed 
great potential on using anomaly detection in laboratory 
requests or production data [5, 25, 53, 54]. Using 
sequence data may have other limitations. For example, 
sample submission may have little granularity at farm 
level, as it is generally not economically sustainable on 
a daily basis, and sequencing can also be less frequent 
on small farms or at specific production stages, such as 
finishing farms. This reduces the amount of information 
from a system that can be captured and tends to delay 
interventions.

The relatively good performance of sequences 
compared with other sources of data shows a promising 
application of surveillance based on sequence data 
to assess the presence of outbreaks. This could be 
especially important when syndromic surveillance may 
be too unspecific. With the increasing use of molecular 
diagnostics, a valuable source of sequences is available 
and can be monitored to obtain precise information 
about the sanitary status of herds and production 
systems. We have showed the value of this approach 
compared to other sources of data. Still, there is room 
to improvement. Further studies incorporating other 
diseases and outbreak distributions are recommended to 
gain more insights in alternative scenarios and improve 
the diagnostic validity of these methods. The algorithms 
evaluated here can be easily extrapolated to monitor 
other time series of routinely collected data such as 

mortality, weight gain, etc., when they can be used as a 
reliable proxy of the presence of disease. The results of 
this study will hopefully aid to inform which methods 
perform well or poorly in this specific setting and 
contribute to the development of proactive approaches 
for animal health early detection and rapid control.
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