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Abstract 

Different human and animal pathogens trigger distinct immune responses in their hosts. The infection of bacteria 
or viruses can trigger type I pro-inflammatory immune responses (e.g., IFN-γ, TNF-α,  TH1 cells), whereas infection 
by helminths typically elicits a type II host resistance and tolerizing immune response (e.g., IL-4, IL-5, IL-13,  TH2 cells). In 
some respects, the type I and II immune responses induced by these different classes of pathogens are antagonistic. 
Indeed, recent studies indicate that infection by helminths differentially shapes the response and outcome of sub-
sequent infection by viruses and bacteria. In this review, we summarize the current knowledge on how helminth 
infections influence concurrent or subsequent microbial infections and also discuss the implications for helminth-
mediated immunity on the outcome of SARS-CoV-2 disease.
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1 Introduction
Many viruses and bacteria are threats to human and ani-
mal health. In the laboratory, the pathogenesis of viral 
and bacterial infections is often studied in model organ-
isms under specific pathogen-free conditions [1]. How-
ever, in nature, co-infections with viruses, bacteria, and 
helminths are the norm, and infection with one organ-
ism can alter host susceptibility to infection with another 
[2, 3]. Helminths have coevolved with their vertebrate 
hosts for hundreds of millions of years, which has ena-
bled many to persist chronically with limited tissue dam-
age [1]. Moreover, their hosts have developed tolerance 
mechanisms as a strategy to prevent the adverse effects of 
helminth-mediated or immune-mediated tissue damage.

Helminths including nematodes, cestodes and trema-
todes, are handled differently by the host immune sys-
tem compared to bacteria or viruses. Bacteria and 
viruses both typically trigger a type 1 immune response 
[4]. Although the development of such pro-inflamma-
tory responses is crucial for the control of potentially 
lethal bacteria and virus infections, the cost can be tis-
sue damaging inflammation [3]. In contrast, helminths 
stimulate potent type 2 immune response, which results 
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in clearance and/or tolerance to helminths, and includes 
anti-inflammatory and wound healing programs. These 
properties are important when large multicellular hel-
minths migrate through host tissues [5]. Recent reviews 
explored some recent literature to understand the main 
immune mechanisms on the control of viral coinfection 
[6, 7]. In the context of co-infections, published studies 
suggest that helminth infection can either be beneficial or 
detrimental to bacterial and viral infection [8, 9]. Despite 
recognizing these different outcomes, there is limited 
mechanistic insight as to the basis for these effects. 
Rather than an exhaustive summary of the literature, our 
goal in this review is to provide some key concepts and 
emphasize existing issues in relation to helminth as a 
friend or foe in bacterial or viral infection.

2  Type 2 immune response generated by helminth 
infection

Parasitic helminths typically establish chronic infection, 
yet are generally tolerated with limited immunopathol-
ogy, presumably due to their potent immunomodulatory 
effects [10]. Helminth infections generally induce robust 
type 2 immune responses [11], with protective immu-
nity mediated by  TH2 cells and the cytokines they pro-
duce, including IL-4, IL-5, IL-9, and IL-13 [12]. While 
 TH2 responses limit helminth infection and can result in 
the physical expulsion from the mucosal membranes in 
which they reside, helminths are rarely killed. The impor-
tance of the  TH2 response in helminth immunity is sup-
ported by population genetic associations between loci 
that control  TH2 responses or their effector cytokines 
and susceptibility to worm infections [13]. Moreover, 
helminths were not expelled from the mouse intestine in 
the absence of IL-4/IL-13, the IL-4Rα chain (a subunit of 
the IL-4 and IL-13 receptors), or STAT6 (a molecule that 
mediates IL-4 and IL-13 signal transduction) [14–16]. A 
deficiency of IL-5 or IL-9 in mice also resulted in much 
greater worm burden during acute or chronic infection 
[17, 18].

The epithelial cell barrier is often the first line of 
defense against helminths, but also provides signals that 
instruct dendritic cells (DCs), group 2 innate lymphoid 
cells (ILC2s), and  TH2 cells to produce type 2 immune 
responses [19]. In response to helminths or ensuing mast 
cells responses, intestinal epithelial cells (IECs) release 
IL-33, which binds to its receptor, ST2 (suppression of 
tumorigenicity 2), to activate a wide range of immune 
cells and elicit the production of type 2 cytokines by 
ILC2s,  TH2 cells, basophils, and mast cells. Tuft-cell-
derived IL-25 is necessary for activating IL-13 produc-
tion by ILC2s, further promoting tuft cell expansion and 
providing an early positive-feedback loop that amplifies 
the type-2-cell-mediated response [20]. Thymic stromal 

lymphopoietin (TSLP) is also produced by epithelial cells, 
which promotes  TH2 cell differentiation and cytokine 
production and can act on a wide array of immune cells 
[21]. Mucus production from goblet cells is induced by 
type 2 cytokines, with IL-13 and IL-4 together playing 
dominant roles [22, 23]. ILC2s express IL-5 and IL-13, 
and IL-4, under certain circumstances [24, 25]. IL-4 helps 
to mediate antibody class switching and the production 
of IgE. IgE along with antigen forms immune complexes 
that bind to IgE receptors on basophils and mast cells, 
resulting in allergic responses and the release of vasoac-
tive and gastrointestinal (GI) tract motility mediators 
including histamine and serotonin [26]. IL-5 is respon-
sible for the activation and recruitment of eosinophils 
from the bone marrow into sites of inflammation [27]. 
IL-9 acts as a growth factor of mast cells, promoting the 
proliferation and survival of mast cells [28]. IL-13 induces 
smooth muscle movement, goblet cell hyperplasia, sub-
epithelial fibrosis, and mucus hypersecretion [29].

3  The co‑infection niche
Most helminths enter their hosts via the fecal-oral route 
in the form of embryonated eggs or infective larvae usu-
ally through consumption of contaminated water or food. 
Some of the GI tract helminths undergo developmental 
molts to generate mature adult larvae that establish infec-
tion in the GI tract (e.g., Heligmosomoides polygyrus), 
whereas others cross the intestinal mucosal barrier to 
the circulatory system and invade skeletal muscle tissues 
(e.g., Trichinella spiralis). Others enter the body via skin 
penetration in the form of infective larvae (e.g., Nippos-
trongylus brasiliensis). Although the parasitic locations 
of different helminths vary, the adaptation of worms to 
their mammalian hosts and their particular immune eva-
sion strategies enable them to survive with limited tissue 
damage [30].

The effects of acute or chronic helminth infection can 
be beneficial or detrimental to subsequent bacterial or 
viral infection depending on the organism and location 
of infection. Enteric helminth H. polygyrus enhanced sus-
ceptibility in the intestine of mice to some enteric path-
ogens such as Citrobacter rodentium [31], Salmonella 
typhimurium [32], and West Nile virus (WNV) [33]. In 
comparison, in the lungs, H. polygyrus had protective 
antiviral effects in the context of respiratory syncytial 
[34] or influenza [35] virus infection. In addition, worm 
infection can have effects on remote sites. For instance, 
an acute helminth infection (N. brasiliensis) induced a 
type 2 immune profile in the female genital tract, which 
leads to greater epithelial ulceration and pathology in 
the context of subsequent herpes simplex virus (HSV)-2 
infection [36]. T. spiralis, which inhabits the small intes-
tine for approximately 2 to 3 weeks, facilitated greater 
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intestinal tissue infection of an enteric norovirus in mice 
[37] yet ameliorated influenza virus-induced inflam-
mation in the lungs [38] and Pseudomonas aeruginosa-
induced pneumonia. The helminth Schistosoma spp., 
which can invade visceral tissues including lungs and the 
liver, also protected lungs from infection with influenza 
virus or pneumonia virus in mice [39]. Thus, helminths 
can colonize different niches, and the influence on other 
microbial agents appears to differ depending on the site 
of secondary infection, with a general protective effect on 
infection and disease caused by respiratory bacteria or 
viruses [40].

4  Bacteria and helminth co‑infections
S. typhimurium is used as a model for human typhoid 
fever and its deleterious effects in mice have been shown 
to be modulated by helminth infection [41]. Levels of 
colonization of S. typhimurium increased independently 
of regulatory T or  TH2 cells induced by co-infection with 
H. polygyrus. Instead, small intestinal metabolites, which 
are altered in abundance during helminth infection, pro-
moted expression of Salmonella pathogenicity island 1 
(SPI-1) genes and increased intracellular invasion [42]. 
It remains unclear, which helminth-induced metabolite 
is responsible for the worsened Salmonella infection. 
Consistent with these results, anti-helminthic treatment 
prior to Salmonella challenge restored host resistance to 
Salmonella [32]. These data suggest that the presence of 
helminths supports initial Salmonella colonization in the 
host small intestine.

Mycobacterial interactions with helminth infections 
have also been studied. In one experimental model, infec-
tion of mice with Schistosoma mansoni made the animals 
more susceptible to Mycobacterium bovis (BCG) infec-
tion. The induction of dominant  TH2 type responses 
by helminth infection resulted in an impaired  TH1 type 
response to BCG [43]. Others have reported that mice 
infected with the intestinal helminth N. brasiliensis have 
impaired resistance to airborne M. tuberculosis infec-
tion and accumulate higher bacterial burden in the lungs 
of coinfected mice [44]. In this case, the  TH2 response 
induced by N. brasiliensis did not impair Mtb-specific 
 TH1 cellular immune responses, but instead enhanced 
the intracellular persistence of M. tuberculosis, in part 
by inducing alternatively activated macrophages via an 
IL-4Rα signaling pathway [44]. Experiments with S. man-
soni co-infection or immunization with S. mansoni egg 
antigens showed impaired M. tuberculosis-specific T cell 
responses without affecting macrophage-mediated M. 
tuberculosis control [45]. S. mansoni infection resulted 
in an accumulation of high arginase-1–expressing mac-
rophages in the lung, which formed type 2 granulomas 
and exacerbated inflammation in Mtb-infected mice. 

Treatment of coinfected animals with an anti-helminthic 
drug improved Mtb-specific  TH1 responses and reduced 
disease severity [45].

Similar results have been observed in co-infected 
mice with C. rodentium, an extracellular mouse-specific 
enteric pathogen used to model pathogenic Escherichia 
coli infections and inflammatory bowel disease [46]. Mice 
coinfected with H. polygyrus and C. rodentium developed 
substantial pathology in the colon that was associated 
with increased bacterial burden, morbidity, and mortal-
ity; this enhanced disease required STAT6-mediated type 
2 immune mechanisms [31]. H. polygyrus and C. roden-
tium co-infected MyD88 knockout mice accumulated 
higher levels of  TH2 cytokines during helminth infection 
[47], and sustained greater mortality than wild-type mice 
[48].

Apart from these studies, infection of helminths can 
also have beneficial effects on the outcome of bacterial 
infections (Figure 1). Infection of H. polygyrus protected 
BALB/c mice that were subsequently infected by Listeria 
monocytogenes. This phenotype was linked to a popula-
tion of virtual memory  CD8+ T  (CD8+ TVM) cells that 
expanded upon infection with the helminth via IL-4 and 
IL-4Rα signals [9]. IL-15 and age are also essential for the 
helminth-induced increase in TVM cells [40, 49]. H. poly-
gyrus infection also can enhance acute airway neutrophil 
responses to P. aeruginosa infection to improve survival 
rates [50]. In addition, prior infection with Trichinella 
spiralis improved pulmonary inflammation and survival 
after P. aeruginosa infection and pneumonia through 
a  TH2-type response associated with eosinophils [51]. 
Helminth infections result in the recruitment of eosino-
phils that supports persistence and survival by limiting 
the development of tissue-destructive  TH1-type immune 
responses [52].

5  Virus and helminth co‑infections
Co-infection of helminths and viruses also can have dif-
ferent outcomes (Figure  2). For example, infection with 
the helminth T. spiralis and the enteric murine norovi-
rus (MNV) resulted in higher viral loads, and this phe-
notype was dependent on STAT6 signaling and a type 
2 cytokine [37]. Co-infection of H. polygyrus and WNV 
exacerbated gastrointestinal tract dysmotility, gut perme-
ability, infection, and mortality via a tuft cell-IL-25-IL-4 
receptor signaling axis [33]. In both cases, worm infec-
tions stimulated immune cells to secrete IL-4, which 
polarized macrophages [33, 37] and shifted the immune 
response from  TH1 to  TH2, which impaired control of 
viral infection in the gastrointestinal tract. As MNV can 
directly infect and replicate within tuft cells, the type 2 
cytokines (IL-4 and IL-25) induced by helminths can pro-
mote MNV infection in the setting of tuft cell hyperplasia 
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[53], whereas helminth-dependent effects on WNV 
pathogenesis required the immunomodulatory functions 
of tuft cells [33]. Increased viral infection in the lung and 
greater mortality also were observed in Ascaris suum and 
vaccinia virus (VACV) co-infected mice. The ablation 

of  CD8+ T cells and the marked reduction of circulat-
ing IFN-γ-producing  CD4+ T cells against VACV were 
associated with an increase in morbidity and mortality in 
co-infected animals [54]. Co-infection of H. polygyrus or 
S. mansoni eggs reactivated murine gammaherpesvirus 

Figure 1 Co-infection of helminths and bacteria can result in different outcomes. Improved outcome: Helminth infections can have 
a protective effect on bacterial infection by increasing the number of virtual memory  CD8+ T  (CD8+ TVM) cells. Helminths can improve pulmonary 
inflammation after bacterial pneumonia through a  TH2-type immune response associated with eosinophil influx, which limits the development 
of  TH1-type immune responses. Worsened outcome: Helminth infection and its ensuing  TH2 immune response can impair host  TH1 anti-bacterial 
response. Helminth infection also causes changes in the small intestinal metabolome from gut microbiota, which contribute to colonization 
of enteric bacteria.

Figure 2 Co-infection of helminths and viruses can result in different outcomes. Improved outcome: (Left) Enteric helminth infections can 
improve the outcome of respiratory viral infections via  TH2 or type I IFN. Worsened outcome: (Right) Helminth infections induce type 2 immune 
response through activation of group 2 innate lymphoid cells (ILC2s) by tuft cells in the intestine. In the setting of some viral infections (e.g., West 
Nile virus, WNV), enteric helminth infections can lead to impairment of virus-specific  CD8+ T cells responses through effects on commensal bacterial 
translocation due to compromised barrier functions. Fewer virus-specific  CD8+ T cells results in a failure to control systemic infection.
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(MHV)-68 infection [55]. Treatment with IL-4 com-
plexes plus anti-IFN-γ increased murine γ-herpesvirus 
infection, suggesting that co-infection can induce reac-
tivation through a “two signal” mechanism. Helminth N. 
brasiliensis-induced type 2 immunity promoted pathol-
ogy following herpes simplex virus (HSV)-2 infection by 
an eosinophil influx, which was IL-33/IL-5-dependent 
but IL-4Rα independent [36]. H. polygyrus have been 
found to exacerbate murine astrovirus infection, as this 
virus targets goblet cells, which proliferate in response to 
enteric helminth infection [56]. Suppression of the anti-
viral type I IFN response by schistosome egg antigens 
predisposes the liver to enhanced lymphocytic chori-
omeningitis virus (LCMV, murine pathogen) replication 
with ensuing immunopathological consequences [57].

In other instances, helminth infection can improve the 
outcome of viral infections, especially against diseases 
caused by respiratory viruses. This may be because the 
host response to infection rather than direct injury of res-
piratory cells by viral infection accounts for the clinical 
and pathological changes in the lung [58]. Limiting the 
infiltration of immune cells to the lungs or changing the 
quality of their response could lessen pulmonary inflam-
mation [58]. Co-infection with trichinosis reduced influ-
enza virus-induced inflammation in the lungs, although 
it did not affect viral replication and clearance [38].

During co-infection of Nematospiroides dubius and 
influenza virus in mice, the virus titer in the lungs 
trended lower than in controls [35]. The progression of 
H1N1 (A/WSN/33) influenza A virus (IAV) infection can 
be ameliorated by pre-existing Litomosoides sigmodontis 
infection at larval and juvenile adult stage of filarial infec-
tion [59]. S. mansoni co-infection affected the pathogen-
esis of pneumonia virus (PMV) of mice, a mouse virus 
that models respiratory syncytial virus (RSV) infections. 
PMV viral burden accumulated more slowly and was 
cleared by fewer  CD8+ cytotoxic T cells with less airway 
inflammation. The increased resistance of coinfected 
mice to PMV was attributed to TNFα-dependent goblet 
cell hyperplasia by S. mansoni eggs [39]. In a co-infection 
study of H. polygyrus and RSV, enteric helminth infection 
through pathways that remain undefined induced type I 
interferon (IFN) signaling in the lung to protect against 
viral infection, possibly through helminth interactions 
with the gut microbiota [34]. In a co-infection study with 
S. mansoni and murid gammaherpesvirus 4 (MuHV-
4) in mice, helminth infection enhanced control of viral 
infection by augmenting antigen-specific  CD8+ T cell 
responses [40].

Data on helminth co-infection and COVID-19 are just 
beginning to emerge. Epidemiological studies in Africa 
suggest that a lower percentage of patients infected 
with SARS-CoV-2 suffers from serious COVID-19 than 

in industrialized nations. In some reports, co-infection 
with Entamoeba spp., Hymenolepis nana, S. mansoni, 
and Trichuris trichiura appeared to lower the probabil-
ity of developing severe COVID-19 [60]. Consistent with 
this observation, helminth antigens modulate the activa-
tion of  CD4+ and  CD8+ T cells of convalescent COVID-
19 patients in  vitro. Stimulation of peripheral blood 
mononuclear cells from COVID-19 patients with hel-
minth antigens was associated with increased IL-10 and 
reduced IFN-γ and TNF-α production [61]. SARS-CoV-2 
can trigger over-exuberant immune responses that result 
in high levels of circulating pro-inflammatory cytokines, 
which can cause acute respiratory distress and systemic 
inflammatory response syndromes [62]. As helminths 
can potently activate anti-inflammatory  TH2 immune 
response, this could be a mechanism to mitigate circula-
tory compromise and lung injury. Beyond this, helminth 
infection reportedly decreases expression levels of ACE2 
receptors, which could lead to reduced SARS-CoV-2 
infection in the host [63].

6  Conclusions
Co-infection of worms with bacteria or viruses can result 
in different physiological outcomes, which vary depend-
ing on the specific combination of helminth and bacteria 
or viruses and the niche they occupy. Helminths typically 
establish chronic infection, and are generally tolerated 
by the host with limited immunopathology, presumably 
due to their potent immunomodulatory activity [10]. As a 
negative consequence of immunomodulation, helminth-
infected individuals may be more susceptible to second-
ary microbial infections, especially when they share a 
niche [11]. Helminth infections characteristically induce 
a robust  TH2 immune response, which can impair the 
induction of protective  TH1 immunity against bacterial 
or viral pathogens [64].

Enteric or cutaneous helminth infection appears to 
reduce the severity of bacterial or viral infections in the 
respiratory tract [35, 38, 39, 51, 65], and preliminary 
results suggest a negative correlation between helminth 
infection and COVID-19 severity in helminth-endemic 
regions [66]. During chronic infection, helminths can 
suppress immune responses to bystander pathogens/
antigens and atopic, autoimmune, and metabolic dis-
orders. Helminth-induced immunoregulation occurs 
through the induction of  TH2-type cells [66], which 
can activate macrophage subpopulations that are less 
inflammatory [67]. Helminths affect subsequent bacte-
rial or viral infections by activating IL-4 signaling path-
ways [33, 34, 45], including in myeloid cells resulting in 
their altered transcriptional profile and upregulation of 
proteins (arginase-1 (Arg-1), chitinase-3-like protein 3, 
Resistin-like molecule (Relm) α and CD206 (mannose 
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receptor) that decrease inflammatory responses and pro-
mote wound healing [68, 69]. The findings of such stud-
ies will be very important as they indicate that helminth 
therapy is a boon for inflammatory diseases.

The hygiene hypothesis purports that in the context of 
improved hygiene and sanitation, a variety of inflamma-
tory disorders that preferentially affect people in the devel-
oped world are linked to a loss of helminth infection. These 
include asthma, autoimmune diseases (type I diabetes, 
multiple sclerosis), and inflammatory bowel disease [30]. 
Helminth infections may alleviate autoimmune diseases 
by causing a reduction in pro-inflammatory cytokines and 
immune responses [70]. Helminths that colonize a differ-
ent niche from where secondary infection with bacteria 
or viruses occurs also appear to have protective effects 
by reducing inflammation and immunopathology [3]. 
Although in many parts of the world, the elimination of 
helminth infection was considered a success, the emerg-
ing awareness of immunological benefits in several differ-
ent disease contexts warrants reconsideration and even 
possible targeted re-introduction. The benefits of helminth 
against infection-related inflammatory diseases such as 
COVID-19 are very important, especially in the current 
situation after the COVID-19 pandemic.

During helminth infection, a state of host resistance 
and tolerance develops, which can impact the course of 
co-infection by bacteria and viruses. More studies are 
needed to elucidate the detailed mechanisms of the inter-
active immune responses that have detrimental effects, 
as such knowledge could inform future targeted control 
strategies to avoid the negative outcomes of helminth 
co-infection. As helminths can also provide benefits to 
their hosts by virtue of the induced immunoregulatory 
networks that resolve inflammation and promote wound 
healing, studies that identify these anti-inflammatory 
molecules and pathways could be a new source of agents 
to mitigate adverse pathological inflammation associated 
with infection or autoimmunity.
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