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Abstract 

Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture 
worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease 
that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process 
that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To 
date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. 
All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental 
approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview 
of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory 
protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowl‑
edge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide 
a rational basis for the development of nonvaccinal alternatives for CSFV control.
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1  Introduction
Classical swine fever virus (CSFV) is an ancient patho-
gen responsible for classical swine fever (CSF), one of 
the most lethal diseases affecting domestic pigs and wild 
boar [1, 2]. CSF causes massive economic losses and is a 
threat to animal health, which is the main reason for its 
mandatory notification to the World Organization for 
Animal Health (WOAH) [3]. CSFV is a single-stranded, 
positive-sense enveloped virus belonging to the genus 
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Pestivirus within the family Flaviviridae, which also 
includes the genera Flavivirus, Hepacivirus, and Pegivi-
rus [4, 5]. Other well-known pathogens included in this 
genus Pestivirus are the bovine viral diarrhea virus-1 
(BVDV-1), BVDV-2, and border disease virus (BDV) [2]. 
CSF virions have icosahedral symmetry and are 40–60 
nm in diameter. Its genome of approximately 12.3 kb con-
tains untranslated regions (UTR) at the 5′ and 3′ ends, 
and a large open reading frame (ORF) encoding a single 
polyprotein. After co- and post-translational process-
ing by viral and host proteases, the polyprotein matures 
into 4 structural and 8 non-structural proteins [6–8]. 
The non-structural proteins (Npro, p7, NS2, NS3, NS4A, 
NS4B, NS5A and NS5B), except for Npro, are distributed 
toward the 3’ end of the genome. They are encoded by 
an amino acid sequence that is highly conserved among 
members of the genus Pestivirus and assist mainly in viral 
replication and immune evasion [9]. Structural proteins 
include C, Erns, E1 and E2, which are mainly involved in 
virus assembly. Erns, E1 and E2 are located on the surface 
of the virion while C is associated with the capsid [7].

CSFV enters the host through the mucous membranes 
of the oronasal cavities and initially infects the epithelial 
cells of the tonsillar crypts, spreading throughout the 
body via the blood and lymphatic circulation and subse-
quently invading the lymphoid tissue [10]. In a next step, 
the virus is transported to the regional lymph nodes and 
enters the efferent blood capillaries, resulting in viremia 
[11]. The virus then replicates in the bone marrow and 
secondary lymphoid organs, including the spleen, lymph 
nodes, and small intestinal lymphoid structures [12]. 
Parenchymatous organs are invaded late in the viremic 
phase. CSFV has a distinctive tropism for cells of the 
immune system, causing severe leukopenia associated 
with apoptosis of leukocytes in the thymus, spleen, 
lymph nodes, and bone marrow of infected pigs [13–16]. 
The ultimate outcome of viral infection is generally asso-
ciated with a complex and diverse host response to the 
virus.

Interactions between the envelope proteins of a virus 
and cellular receptors are crucial in the infection process 
[17]. These interactions can facilitate the attachment of 
the virus to the cell without the subsequent membrane 
fusion and entry, or they can induce the conformational 
changes necessary for these events to occur. The recep-
tors involved in the first of these interactions are known 
as attachment receptors and play an important role in the 
infection of certain cells by increasing entry efficiency. 
However, it is the presence of entry receptors that deter-
mines whether a particular cell type is susceptible to 
infection [18]. The cellular mechanisms leading to CSFV 
entry requires a deeper study. The virus-host interactions 

that take place during infection are relevant for the dis-
cernment of the mechanisms involved in this process and 
to open new opportunities to develop novel therapeutic 
approaches. The aim of this review is to provide an over-
view of the current knowledge related to the interactions 
between CSFV and the host cell factors involved in its 
entrance.

2 � Viral proteins involved in CSFV entry
The infection process of CSFV, like that of other mem-
bers of the Flaviviridae family, is probably a complex 
multistep process not fully understood. Cell entry of pes-
tiviruses in general, and of CSFV in particular, is probably 
one of the least comprehended events. It has been estab-
lished that CSFV enters PK15 cells through a receptor-
mediated endocytosis mechanism dependent on clathrin, 
cholesterol, dynamin, and the Rab5 and Rab7 proteins 
[19]. A similar mechanism was demonstrated for BVDV 
internalization, including the need of low-pH conditions 
[20, 21]. Likewise, it seems that CSFV can also employ 
different endocytic pathways to infect different cells, as 
it showed to relay in caveolin to infect porcine alveolar 
macrophages [22]. CSFV surface proteins are involved in 
the initial interaction with the membrane receptors. Erns 
facilitates initial cell attachment [29], while interaction 
of E2 with one or more receptors mediates entry. After 
entry, fusion of the viral and cellular membranes is medi-
ated by the E1 and E2 glycoproteins in a pH-dependent 
process [28], in which the E2 peptide 129CPIGWTG-
VIEC139 is thought to be involved [30]. Once the genetic 
material is released into the cytosol, the pathogen hijacks 
the cellular machinery to replicate its genome. The study 
about the contribution of the CSFV envelope glycopro-
teins is relevant to understand the mechanisms that the 
virus employs during infection.

2.1 � Erns
Erns is a unique viral protein that can be anchored to the 
membrane or secreted into the extracellular environment 
[23]. Both forms of the protein are precisely balanced. 
The anchored protein contains a long amphipathic helix 
at its C-terminus that is slightly tilted into the membrane. 
This differs from the transmembrane domain of E2 and 
E1 [24, 25]. The soluble form possesses RNase activity, 
which may be involved in the regulation of RNA synthe-
sis in infected cells, the induction of immunosuppression 
in the host, and the attenuation of virulence in a viru-
lent background [23, 26]. In the virion, the protein has a 
molecular weight of 42–48 kDa, but is usually found as 
a homodimer of about 100 kDa, established by the car-
boxyl-terminal cysteine C171 [27]. The protein is highly 
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glycosylated with approximately 50% of its mass consist-
ing of N-linked glycosyl groups [28].

Erns is essential for pestivirus replication but dispen-
sable for infection, as shown by experiments with pseu-
dotyped retroviruses carrying pestivirus glycoproteins 
[29]. It is thought that the protein may mediate initial 
attachment to cells by interacting with a widely expressed 
surface molecule [29]. This was suggested by the fact that 
Erns of a CSFV vaccine strain also binds to the surface of 
cells from different species [30]. Hulst et al. [31] investi-
gated the role of GAGs in the initial binding of CSFV to 
cells. They concluded that the interaction of CSFV Erns 
with membrane-associated HS facilitates the binding of 
the virus to the cell surface. This finding is confirmed 
by the inhibition of binding after propagation in por-
cine PEDSV.15 cells [32] or in the presence of the drug 
DSTP 27 [33]. It appears that the increased binding to 
glycosaminoglycans is a result of cell culture adaptation. 
The change S476R in the C terminus of Erns proved to 
be sufficient to transform a HS- independent virus into a 
virus that uses HS as an Erns receptor [31]. It is thought 
that electrostatic forces are the cause of this interaction, 
although HSPG might interact more specifically with 
the BVDV Erns as it was proposed in another study [34]. 
Several other data suggest that Erns might interact with a 
more specific receptor, maybe the Laminin receptor [35]. 
Its ability to induce neutralizing molecular antibodies 
capable of blocking infection of HS-independent geno-
types or to exert cytotoxic action on lymphocytes in its 
unbound state favored this idea [36–38]. However, until 
now its exact contribution to virus infection and entry 
remains to be discovered.

2.2 � E1
E1 is the least characterized of the CSFV structural pro-
teins, and its structure and function require further 
investigation [23]. It appears to be buried in the mem-
brane, as no antibodies to the protein have been detected 
in infected animals [39]. E1 is a 33  kDa protein with a 
transmembrane anchor that forms disulfide-linked het-
erodimers with E2 on the virus particle [40]. E1 and E2 
are the only envelope glycoproteins required to mediate 
fusion of pseudotyped viruses [29]. The protein has been 
implicated in the fusion process during viral infection. 
A stretch of hydrophobic amino acids (57–85) in E1 has 
been proposed as the peptide responsible for fusion of 
viral and cellular membranes [41]. However, E1 is only 
about half the size of E2, and E2 is an elongated protein; 
thus, E1 would have to be very long and thin to bridge 
the distance to the target membrane after E2 has estab-
lished receptor contact [23]. The study of the protein in 
hepatitis C virus, another member of the Flaviviridae 
family, suggests that E1 might play a more important role 

than previously thought in the flavivirus life cycle. Muta-
tions in E1 affect the infectivity of pseudoparticles car-
rying the HCV glycoproteins and modulate the binding 
of these particles to CLDN1-expressing cells [42]. These 
findings support the idea that mutations in E1 might 
abolish a critical interaction between E1 and CLDN-1 
or affect how E2 interacts with cell entry factors. In this 
regard, it has been observed that mutations in E1 can 
affect E2-CD81 interaction, indicating that E1 plays a role 
in modulating the receptor binding capacity of E2 [42]. 
In another study it was found that mutations T213A and 
I262A in the protein generated attenuation and shifted 
the virus receptor dependence from Claudin-1 to Clau-
din-6 in the target cell line [43].

Studies have also demonstrated the importance of E1 
for virulence. An insertion of 19 amino acids into the 
C-terminus of E1 attenuates the highly virulent strain 
Brescia [43]. In silico analysis predicted that the inser-
tion introduces an alpha helix and turns near the E1/E2 
cleavage site. This change, as described by the authors, 
may directly affect a specific virulence determinant on 
E1 or alternatively alter its ability to interact with E2 or 
other viral proteins critical for viral uptake, cell tropism, 
or viral spread in the host. It has also been reported that 
the N6A, N19A, and N100A substitutions cause infertil-
ity and attenuation in the BICv strain [44].

2.3 � E2
E2 is the most immunogenic protein of the virus and 
induces a neutralizing antibody response capable of con-
ferring protection [45, 46]. As the main target for neu-
tralizing antibodies, E2 alone can induce protection in 
animals. This and the fact that E2 is responsible for spe-
cies tropism has been exploited in vaccine production. 
The glycoprotein is essential for the life cycle of the path-
ogen and an important virulence determinant, as virus 
mutants with partial or complete deletions of E2 are not 
viable [47, 48]. It is also responsible for the interaction 
with the cellular receptor that mediates entry determin-
ing viral tropism. E2 is anchored to the viral membrane 
by a hydrophobic sequence in its C-terminus [49]. It can 
be found as a homodimer of about 100 kDa, but mostly 
forms heterodimers with E1 of about 75 kDa, stabilized 
by a disulfide bond [2]. Within the viral genome, the 
N-terminal half of E2 is one of the most variable regions, 
so phylogenetic analyses based on 190 nucleotides of 
this region are used for virus classification [50]. The use 
of monoclonal antibodies (mAbs) directed against the 
E2 protein of the Brescia strain of CSFV allowed the 
identification of 4 antigenic domains: A, B, C and D, at 
the N-terminal end of the protein [51]. In a model built 
from the three-dimensional structure of the E2 of this 
strain, 4 antigenic domains (A, B, C and D), the potential 
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glycosylation sites and the present disulfide bridges are 
identified. Domain A has 3 subdomains: A1, A2 and A3, 
of which the first 2 are highly conserved among differ-
ent virus strains, while A3 is more variable. Only the A1 
subdomain together with the B and C domains induce 
neutralizing antibodies, but the sequences correspond-
ing to the B and C domains are less conserved [52]. The 
antigenic sequence 829TAVSPTTLR837, located in the 
A/D domain of the protein, has been defined as highly 
conserved among the different CSFV variants, but not 
among the different pestiviruses. This sequence is also 
the target of neutralizing antibodies [53]. A study using a 
30-amino acid peptide library whose sequences together 
spanned the entire protein identified the sequence 
830AVSPTTLRTEVVKTFRRDKPFPHRMDCVTT858 as 
being involved in virus-cell binding [54].

However, even when research on CSFV glycoproteins 
has been focused mainly on E2 because all the above-
mentioned reasons, it is worth of consideration the coop-
erating role of E1 during the entry process. It might be, as 
has been observed in the case of HCV, more important 
than we have previously thought.

3 � Cellular proteins involved in CSFV entry
Identifying the cellular proteins that mediate virus 
attachment and entry is critical to understanding virus 
entry. Unfortunately, the pestivirus entry process remains 
poorly understood, although previous studies have 
shown that CSFV infects PK15 cells by binding to sev-
eral membrane proteins followed by clathrin-depend-
ent endocytosis [19]. Caveolin-dependent entry has 
also been reported in porcine alveolar macrophages 
[22]. To date, seven cellular receptor molecules have 
been described for CSFV, namely heparan sulfate (HS), 

complement regulatory protein 46 (CD46), low-den-
sity lipoprotein (LDL) receptor, Integrin ß3, Annexin 2, 
MERKT, Laminin receptor and a disintegrin and metal-
loproteinase 17 (ADAM17). The main results related to 
the identification of these molecules and their relevance 
in the infection are described in detail in the next para-
graphs and summarized in Table 1.

3.1 � Complement regulatory protein (CD46)‑46
Membrane cofactor protein, also known as CD46, is a 
type I transmembrane protein that serves as a comple-
ment regulator [55]. It is expressed in human cells as 4 
isoforms derived from alternative splicing of a single gene 
of approximately 46 kb [56]. CD46 protects host cells 
from complement attack by acting as a factor I cofactor in 
the proteolytic inactivation of C3b and C4b [57]. In pigs, 
the protein is present in cells of epithelial and endothe-
lial origin, fibroblasts and circulating cells and, in con-
trast to its human counterpart, is abundantly expressed 
in erythrocytes [55, 58]. Bovine CD46 was identified 
as the receptor for BVDV after monoclonal antibodies 
directed against the receptor inhibit viral infection [59, 
60]. Furthermore, expression of bovine CD46 in porcine 
cells increased their susceptibility to BVDV infection 
[60]. Further studies revealed that peptides 66EQIV69 and 
82GQVLAL87, located on the antiparallel ß-sheet of CD46 
CCP 1, were critical for receptor interaction with BVDV 
[61]. A study by Hulst et  al. [30] suggested that BVDV 
and CSFV use a homologous receptor because the solu-
ble E2 protein of CSFV could inhibit infection by both 
viruses. Considering that pestiviruses are structurally and 
antigenically closely related, the involvement of porcine 
CD46 in CSFV infection was investigated.

Table 1  Cellular factors/proteins involved in CSFV entry 

Cellular factor/protein Functions CSFV partner References

CD46 - Acts as a complement regulator
- BVDV receptor

Probably E2  [33, 60]

ADAM17 - Intervenes in the processing of transmembrane proteins E2  [65]

Heparan sulfate - Prevents degradation of proteins/substances
- Acts as an endocytosis receptor
- Is involved in the attachment of multiple virus

Erns  [31, 33, 68]

Laminin receptor - Cellular receptor
- Is involved in adeno-associated virus infection

Erns  [35]

Integrin ß3 - Is involved in proliferation and migration of endothelial cells
- Acts as receptor/co-receptor for other viruses

?  [77, 79]

Annexin II - Participates in membrane trafficking
- Has ion channel activity
- Participates in DNA replication
- Acts as a virus receptor

E2  [81, 83, 84, 86–88]

MERKT - Is involved in the phagocytic clearence of apoptotic cells
- Potentiates virus infection

E2  [89–92]
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Dräger et al. [33] incubated virus-permissive cells with 
a mixture of monoclonal antibodies directed against por-
cine CD46. The cells were then infected with Roesrath, 
a moderately virulent variant of CSFV and analyzed by 
immunofluorescence for evidence of viral infection. The 
results suggested that CD46 is involved in CSFV infec-
tion, since blockade of the protein results in an almost 
complete inhibition of viral infection. However, when 
the experiment was repeated using the Roesrath variant, 
which was subjected to 30 passages in culture, blockade 
of CD46 had less effect on infection. The authors dem-
onstrated that this was due to the preferential use of HS 
after adaptation to cell culture, which has been previ-
ously observed for CSFV and other viruses [62]. Pre-
vious studies by Hulst et  al. [31] had shown that in the 
case of CSFV, after adaptation to culture in SK6 cells, a 
change from serine to arginine at position 476 of the Erns 
protein favors binding to HS. It is not known whether 
this mutation in Erns, which is also sufficient for bind-
ing, arises to compensate for any mutation(s) in E2 that 
reduce(s) the affinity for its own receptor. Since then, 
it has been assumed that CD46 is one of the receptors 
involved in CSFV infection, that it interacts with E2. 
Conversely, a recent study questioned the involvement 
of CD46 in CSFV infection [63]. Using virus isolates of 
different virulence and representing genotypes 1 and 2 of 
the virus, CD46 was not found to be involved in infec-
tion. Knockout of the protein did not alter viral infection. 
Even when some experiments suggest that porcine CD46 
plays an important role in CSFV infection, the absence of 
complete inhibition of the infection after using antibod-
ies directed against the protein, suggests the involvement 
of other entry factors.

3.2 � A disintegrin and metalloproteinase 17 (ADAM17)
The tumor necrosis factor-α-converting enzyme (TACE) 
usually known as ADAM17 is a single-pass transmem-
brane metalloproteinase responsible for the processing 
of many transmembrane proteins. Preliminary studies 
indicate that it might also be involved in BVDV infec-
tion [64]. CRIB cells, which are resistant to infection with 
BVDV do not express functional full-length ADAM17 
mRNA and have two defective alleles of the protein. 
When ADAM17 was provided in trans in CRIB-1 cells, 
their resistance to infection with a diverse array of pes-
tivirus (BVDV-1, HoBiPeV, CSFV, LindaV) was nearly 
completely reverted. Nevertheless, the susceptibility to 
infection or the propagation efficiency never reach the 
levels observed in MDBK cells, a cell line used in BVDV 
infection experiments [64]. This indicates that the effect 
of additional factors involved in the infection of CRIB cell 
resistance must be investigated.

Yuan et  al. [65] have shown that the protein is also 
related to CSFV infection of permissive cells. The knock-
out of the protein in PK15 cells blocked the binding of 
soluble E2 protein and the entry of CSFV pseudotyped 
particles (CSFVpp) as well as cell culture grown CSFV. 
The interaction of the E2 protein and ADAM17 takes 
place through the metalloproteinase domain. A protein 
mutant lacking ADAM17 intracellular domain com-
pletely reestablished the infection in ADAM17-KO cells, 
suggesting that the protein serves as an attachment fac-
tor during CSFV entry and not as a virus internalization 
receptor. The sequence aa301-345 in the metalloprotein-
ase domain involved in virus-host recognition is identical 
in pig, human and mouse. This is a possible explanation 
of why mouse and human ADAM17 could confer permis-
siveness of CSFVpp to ADAM17-KO cells as efficiently as 
pig ADAM17. This indicates that ADAM17 is not a host 
determinant of CSFV infection, and the infection process 
might require the involvement of other proteins.

3.3 � Heparan sulfate
Heparan sulfate proteoglycans (HSPG) are cell surface 
proteins covalently linked to glycosaminoglycan (GAG) 
chains of heparan sulfates (HS), an unbranched sulfated 
anionic polysaccharide [66]. HSPGs are present at the cell 
surface membrane and their multiple functions include 
preventing the degradation of cytokines, chemokines, 
growth factors, and morphogens, and serving as endo-
cytosis receptors for extracellular molecules and other 
cellular receptors. The highly sulfated GAG chains of 
HPSG provide the global negative charge sufficient to 
electrostatically attract the basic residues of viral surface 
glycoproteins or the viral capsid proteins of non-envel-
oped viruses. These interactions, even the weak ones, can 
increase the virus concentration at the cell surface and 
facilitate the likelihood of binding a more specific entry 
receptor [67].

Many viruses, ranging from natural isolated to labo-
ratory strains, have shown a HSPG dependance during 
infection [66]. For others, the use of HSPG is a result of 
cell culture or intra-host adaptation. This seems to be the 
case of CSFV. According to the investigations carried out 
by Hulst et  al. [31] and supported by other studies [33, 
68], CSFV is able to use HS as an attachment factor after 
adaptation to cell culture. Treatment of SK6 cells with 
heparinase I and heparin affected the infection of those 
virus clones that had been amplified in cell culture, but 
not of newly isolated clones. As it has been previously 
described, a mutation of Serine to Arginine in Erns at the 
position 476 of the CSFV genome, is responsible for this 
dependency. The substitution of Ser for Arg increases the 
net positive charge of this region, facilitating the elec-
trostatic interaction of proximal or more distant amino 
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acids of the protein with the negatively charged HS [31]. 
Although, the possibility of more specific interaction 
with HS is a plausible idea, as it has been reported to take 
place during the infection of Herpes simplex virus type 
1 (HSV-1) [69]. In this case, the 3-O-sulfation of specific 
glucosamine residues in heparan sulfate generates bind-
ing sites for the viral gD protein or the expression of 
other previously identified gD-binding receptors.

The role of HS for CSFV infection in vivo is a reason-
able concern considering the influence of cell culture 
adaptation in this interaction. Hulst et  al. [68] gener-
ated HS independent (Ser476) or dependent (Arg476) 
mutants from a virulent strain of CSFV to conduct infec-
tion experiments with pigs. Further reisolation of these 
viruses showed that the HS-independent recombinant 
ones were able to infect cultured and primary swine kid-
ney cells by an HS-dependent mechanism. No mutations 
were observed in the Erns, E1, and E2 genes of this virus, 
suggesting that the surface properties of CSFV generated 
in pigs, carrying Ser476 in the C terminus of Erns, were 
distinct from those of genetically identical virus pro-
duced in cell culture.

More studies are needed to elucidate the role of the 
molecule in the virus infection in  vitro and in  vivo. HS 
can function as an independent attachment factor or 
work coordinately with another more specific cell recep-
tor to mediate CSFV entry considering that, in most 
cases, binding of viruses to HS is not sufficient to enter 
the host cell.

3.4 � Laminin receptor
Laminin receptor (LamR) is a protein involved in the 
specific interactions with Laminin. It is expressed in the 
cell in two forms: a cytoplasmic protein of 37 kDa and 
a membrane protein of approximately 67 kDa [70, 71]. 
In mammalian cells, LamR acts as a cellular receptor 
for the cellular prion protein (PrP) [72], and it mediates 
the infection of adeno-associated virus serotypes 8, 2, 3, 
and 9 [73]. It has also been identified as a cellular recep-
tor for Dengue virus, another member of the Flaviridae 
family [74, 75]. Chen et  al. [35] found that the protein 
is involved in the attachment of CSFV to the cell after 
screening pooled siRNAs against porcine membrane pro-
teins. Anti-LamR antibodies, soluble laminin or LamR 
before virus incubation decreased CSFV infection. The 
membrane protein seems to interact with Erns after a co-
immunoprecipitation assay. The receptor expression did 
not confer susceptibility to infection in nonpermissive 
cells, which might indicate that it acts as an attachment 
factor. This hypothesis was validated by the fact that 
LamR expression was sufficient to increase the binding 
of CSFV virions to both permissive and nonpermissive 

cells. The researcher suggested that LamR functioned 
as an alternative pathway to the HS pathway. If there is 
abundant HS on the cell surface, increasing the expres-
sion of LamR does not enhance the infection rate. There-
fore, LamR is involved in CSFV attachment but it not the 
receptor responsible for its.

3.5 � Integrin ß3
Integrin ß3 is a member of the integrins superfamily 
present at the membrane of a wide range of cells. It is a 
heterodimer composed of noncovalently bound a and b 
subunits and has been classified into this subfamily by 
its ß subunit. Structurally, each subunit is a transmem-
brane glycoprotein whose N-terminal domains combine 
to form the ligand-binding site. Integrin ß3 is known to 
be important in endothelial cell migration, vascular biol-
ogy, and tumor angiogenesis. It is also an important cell 
receptor mediating complex outside-in signaling, prob-
ably the reason why many viruses use it as a receptor, 
co-receptor, or a key molecule for infection [18, 76, 77]. 
Many of these virus-integrin interactions are dependent 
on the arginine-glycine-aspartic acid (RGD) cell-adhe-
sion motif The RGD motif can interact with over half of 
the more than 20 known integrins [78].

Li et al. [79] investigated the role of integrin β3 during 
CSFV infection and proliferation. The authors found a 
positive correlation between CSFV proliferation in swine 
testicles epithelial cells (ST) and the high amount of inte-
grin β3 in these cells. In addition, the amount of CSFV 
proliferation decreased in integrin β3-funtionally blocked 
cells as well as in integrin β3-deficient cells. However, 
even when this study suggests that integrin β3 could be 
a promising receptor for CSFV, additional studies are 
needed to evaluate if the protein is indeed related with 
virus attachment or entry.

3.6 � Annexin II
Annexin II is a member of the annexin gene family 
with binding sites for Ca2+, phospholipids, and F-actin 
in its core domain. It has also been reported that its 
COOH-terminal region binds heparin and plasminogen 
[80–82]. The protein exists as a monomer (p36) or a het-
erotetramer formed from two p36 and two p11(S100A10) 
subunits. It has been implicated in exocytosis and endo-
cytosis pathways, as well as in ion channel activity and 
stimulation of DNA replication [81]. Annexin II traffic to 
the cell surface is conducted by an unknown mechanism 
[80]. It has been identified as a receptor for CMV [83] and 
respiratory syncytial virus [84], and a co-factor for mac-
rophage human immunodeficiency virus (HIV)-1 infec-
tion [85]. Some studies have assessed the participation of 
Annexin II in CSFV infection. The genomic expression of 
the protein was upregulated in CSFV-infected PK-15 cells 
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[86] and the treatment of PK-15 cells with Anx2-specific 
polyclonal antibody prior to virus infection significantly 
inhibited CSFV multiplication [87]. In pig peripheral 
blood leukocytes Annexin II expression was also upregu-
lated after CSFV in vivo infection [88]. In this study the 
protein co-localized in the cytoplasm of infected PK-15 
cells with CSFV glycoprotein E2 after confocal laser-
scanning microscopy. This finding suggests that annexin 
II may interact with certain viral proteins during CSFV 
replication and thereby promote the virus cycle.

3.7 � MERTK
MERTK is a protein tyrosine kinase included in the TAM 
(TYRO3, AXL, and MERTK) family. The tyrosine kinases 
are related with the phagocytic clearance of apoptotic 
cells and the antagonism of innate immune responses. 
The interaction of TAM receptors with different viruses 
has been related with viral infection potentiation. The 
entry mechanisms facilitated by this family are diverse 
depending on the member and probably also the virus. 
For example, AXL enables Zaire Ebolavirus (ZEBOV) 
entry by macropinocytosis [89] while mediating the entry 
of dengue virus (DENV) into host cells via the clathrin-
dependent endocytosis pathway [90, 91]. An analysis of 
transcriptomic data describing gene expression pro-
files on PK-15 cells after CSFV infection revealed that 
MERTK could be involved in this process [92]. CSFV 
protein expression was significantly reduced by MERKT-
RNA interference (RNAi) screening. Furthermore, either 
anti-MERTK antibodies or soluble MERTK ectodomain 
could reduce CSFV infection in PK-15 cells in a dose-
dependent manner. It seems like the protein interacts 
with CSFV glycoprotein E2 during the entry process. 
This was indicated by its coimmunoprecipitation with 
E2 but not Erns and surface plasmon resonance (SPR) 
analysis of the ectodomains (ED) of E2 and MERTK. The 
equilibrium dissociation constant (KD) value between 
MERTKED-His and E2ED-His was 1.629 µM. Correspond-
ingly, the colocalization of MERTK and E2 was con-
firmed in HEK293 T cells, which transiently overexpress 
the two proteins. Post virus entry analysis showed that 
MERTK downregulates of mRNA expression of IFN-β 
and promotes CSFV infection. Interestingly, the soluble 
MERTK ectodomain could also reduce the infection of 
bovine viral diarrhea virus (BVDV), another pestivirus.

4 � Current issues and future challenges
CSFV is an interesting pathogen from a molecular, sani-
tary, and economic point of view. Investigations con-
ducted over the last two decades have helped to elucidate 
some of the intriguing features of this virus and have 
contributed significantly to our view of the virus-host 
interplay. Although much is known about the events that 

occur after entry, our understanding of the mechanisms 
involved in viral entry needs to be further explored. 
Many questions remain: What is the key factor involved 
in CSFV entry? Is the host cell receptor(s) used by CSFV 
the same for all cell lines? Are the in vitro results a true 
reflection of what happens in vivo?

In the study of CSFV, some considerations may help 
to understand and focus future investigations. First, this 
virus, like hepatitis C virus (HCV), another member of 
the family, may use a different type of receptors and entry 
mechanisms [93–96]. This strategy is thought to facilitate 
viral infection in the absence of a receptor [35]. Second, 
even though Erns and E2 have been the more studied 
proteins to date, a closer look at E1 may reveal previously 
undescribed contributions. Finally, the combination of 
new technologies such as high-throughput gene sequenc-
ing, gene editing, and genome-based functional screen-
ing would be extremely helpful in the investigation of 
new molecules.

Some studies have already discovered many genes that 
are up- or down-regulated after CSFV infection, includ-
ing the SR-BII gene, TYRO3, CD97, and CD69. For 
example, SR-BII has been found to mediate the inter-
nalization of hepatitis C virus (HCV) into cells through 
its interaction with HCV soluble E2 envelope glycopro-
tein. Its upregulation after CSFV infection suggests that 
it may also be involved in this process [88]. The study of 
these genes and the possible relationship between the 
receptors identified so far and their possible membrane 
partners is also part of the strategy to elucidate the CSFV 
entry mechanism.

5 � Conclusion
In summary, the experimental evidence available so far 
indicates that CSFV entry into the cell, at least in vitro, 
is mediated by Erns and E2 proteins. Interaction of Erns 
with HS or the Laminin receptor could facilitate the ini-
tial binding of the virus to the cell. Subsequently, inter-
action of E2 with various molecules on the membrane 
may lead to specific binding to the receptor that mediates 
entry. The proteins involved could be different depend-
ing on the virus genotype and cell type. Nevertheless, the 
key receptor involved in virus entry remains to be further 
investigated and will help us better understand the viral 
tropism.
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