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Abstract 

Although the role of iron in bacterial infections has been well described for Staphylococcus (S.) aureus, iron acquisi‑
tion in (bovine‑associated) non‑aureus staphylococci and mammaliicocci (NASM) remains insufficiently mapped. This 
study aimed at elucidating differences between four diverse bovine NASM field strains from two species, namely S. 
chromogenes and S. equorum, in regards to iron uptake (with ferritin and lactoferrin as an iron source) and sidero‑
phore production (staphyloferrin A and staphyloferrin B) by investigating the relationship between the genetic basis 
of iron acquisition through whole genome sequencing (WGS) with their observed phenotypic behavior. The four 
field strains were isolated in a previous study from composite cow milk (CCM) and bulk tank milk (BTM) in a Flemish 
dairy herd. Additionally, two well‑studied S. chromogenes isolates originating from a persistent intramammary infec‑
tion and from a teat apex were included for comparative purpose in all assays. Significant differences between spe‑
cies and strains were identified. In our phenotypical iron acquisition assay, while lactoferrin had no effect on growth 
recovery for all strains in iron deficient media, we found that ferritin served as an effective source for growth recovery 
in iron‑deficient media for S. chromogenes CCM and BTM strains. This finding was further corroborated by analyzing 
potential ferritin iron acquisition genes using whole‑genome sequencing data, which showed that all S. chromogenes 
strains contained hits for all three proposed ferritin reductive pathway genes. Furthermore, a qualitative assay indi‑
cated siderophore production by all strains, except for S. equorum. This lack of siderophore production in S. equorum 
was supported by a quantitative assay, which revealed significantly lower or negligible siderophore amounts com‑
pared to S. aureus and S. chromogenes. The WGS analysis showed that all tested strains, except for S. equorum, pos‑
sessed complete staphyloferrin A (SA)‑synthesis and export operons, which likely explains the phenotypic absence 
of siderophore production in S. equorum strains. While analyzing the staphyloferrin A and staphyloferrin B operon 
landscapes for all strains, we noticed some differences in the proteins responsible for iron acquisition between differ‑
ent species. However, within strains of the same species, the siderophore‑related proteins remained conserved. Our 
findings contribute valuable insights into the genetic elements associated with bovine NASM pathogenesis.
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Introduction
Bovine mastitis, an inflammation of the bovine mam-
mary gland, is typically a result of bacterial intramam-
mary infections (IMI), leading to important economic 
losses in dairy production worldwide [1]. Bovine-asso-
ciated non-aureus staphylococci and the closely related 
mammaliicocci (NASM) [2] are traditionally considered 
to be commensals of the mammary gland or minor masti-
tis pathogens. Despite being the most prevalent group of 
bacteria cultured from aseptically collected milk samples 
of dairy cows, their role in the bovine mammary gland 
is under increasing scrutiny. Among and within bovine-
associated NASM species, substantial variations have 
been observed on their effects on udder health and milk 
yield [3–5]. These include differences in virulence [6–8], 
potential beneficial properties [9, 10], host-interaction 
[11, 12], in vitro iron metabolism [8, 13], and epidemio-
logical behavior [14, 15]. Additionally, differences have 
been reported regarding their ecology [15] culminating 
in the ecological categorization of specific NASM spe-
cies as “host-adapted” (e.g., Staphylococcus chromogenes) 
or “environmental” (e.g., Staphylococcus equorum) [16]. 
However, there is also growing evidence of substantial 
strain-level variation within NASM species with some 
strains showing a greater propensity to adapt to specific 
hosts or even particular body sites [17].

Bacteria have a strict nutritional iron requirement for 
growth and pathogenesis (e.g., biofilm production). The 
concentration of free, bioavailable iron within the host, 
however, is restricted as a form of innate nutritional 
immunity against invading bacterial pathogens [18–20]. 
In response to iron-deplete conditions, staphylococci 
have developed multiple iron acquisition strategies from 
the extracellular environment including the secretion of 
siderophores. The latter are small (< 1 kDa) potent iron-
chelating compounds with a high affinity for iron that 
compete with iron-binding host-derived glycoproteins 
such as lactoferrin (found in milk, mucosal secretions, 
and polymorphonuclear leucocytes) in the extracellular 
environment [21–23]. They are used by Staphylococcus 
aureus, a major mastitis pathogen, for iron acquisition 
[24–27]. Staphylococci can synthesize and secrete two 
hydroxycarboxylate type of siderophores, staphylofer-
rin A (SA) and staphyloferrin B (SB) encoded by a four-
gene sfaABCD and nine-gene sbnABCDEFGHI operon, 
respectively [28]. Uptake of ferric-SA or ferric-SB is 
linked to non-interchangeable iron-regulated ABC-type 
transporters htsABC and sirABC, respectively, which are 
encoded by operons located near their respective sidero-
phore biosynthetic genes [29, 30]. While the molecular 
basis of siderophore iron acquisition and its import into 
the cell has been studied extensively for S. aureus in ver-
tebrate hosts [18, 20, 31], there is a paucity of information 

regarding siderophore production and the genetic basis 
of iron acquisition in (bovine-associated) NASM [32–
35]. Also, as far as we know, only one report describes 
ferritin (an ubiquitous intracellular iron storage protein) 
as a potential staphylococcal iron acquisition mechanism 
(e.g., S. xylosus from meat) [36]. In this study, a three gene 
surface-associated reductase was implicated in iron ferri-
tin acquisition rather than siderophore elaboration [36].

The competition for iron between a host and bacteria 
can determine the course and severity of the inflamma-
tory reaction in response to the upcoming infection [23, 
26]. In dairy cows, the concentration of lactoferrin in 
milk varies depending on udder health status, stage of 
lactation, and daily milk production [37]. An increase in 
milk ferritin concentrations during intramammary infec-
tion has been observed [38]. Still, bacterial iron scaveng-
ing in the mammary gland during an infection is not 
well understood [25]. Hence, elucidating iron acquisi-
tion mechanisms in bovine-associated NASM, including 
siderophore production and utilization of host-derived 
iron sources, will help better understand their role in 
udder health.

Substantial differences in iron acquisition have been 
observed between two different S. chromogenes strains: 
one originating from a persistent intramammary infec-
tion (the “IM” isolate) [39] and one from the teat apex 
of a dairy heifer (the “TA” isolate) [40]. The findings sug-
gest S. chromogenes IM to be a true udder-adapted strain 
capable of acquiring iron to sustain growth in the mam-
mary gland in contrast to S. chromogenes TA [13], and 
form the basis for further study of differences between 
and within other NASM species. Collectively, strain vari-
ation should be examined in complement to assessing the 
properties of different bovine-associated NASM to better 
understand their distribution across habitats and to elu-
cidate their relevance for udder health and milk yield in 
dairy cows.

The aims of this study were (1) to investigate the capac-
ity of two diverse S. chromogenes (ecologically classified 
as a “host-adapted” species) strains and two diverse S. 
equorum (ecologically classified as an “environmental” 
species) strains, originating from composite cow milk or 
bulk-tank milk, respectively, in utilizing different sources 
of iron; (2) to assess their siderophore production; and 
(3) to perform whole genome sequencing to identify their 
iron acquisition genes in descriptive comparison with 
their phenotypic behavior.

Materials and methods
Bacterial isolates
Four field NASM strains obtained from a previous study 
[41] and identified through matrix-assisted laser des-
orption/ionization time-of-flight mass spectrometry 
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(MALDI-ToF MS) were included. The strains originated 
from composite cow milk (CCM) samples (one S. chro-
mogenes CCM strain and one S. equorum CCM strain) 
and from bulk tank milk (BTM) samples (one S. chro-
mogenes BTM strain and one S. equorum BTM strain), 
collected in tandem in one commercial dairy herd [41]. 
Isolates obtained in this previous study have been strain-
typed by random amplification of polymorphic DNA 
polymerase chain reaction (RAPD-PCR). In the current 
study, the CCM and BTM strains from each species were 
selected based on having the lowest internal similarity 
scores (75.6% for isolates of both species), as calculated 
using the unweighted pair group method with arithmetic 
mean (UPGMA; Bionumerics software version 7.6.3).

Additionally, two well-studied S. chromogenes isolates 
originating from a persistent IMI lasting over 11 months 
(“IM”) [39] and from the teat apex of a dairy heifer (“TA”) 
[40] were included for comparative purpose in all assays 
as these two strains were previously used in iron assays 
in vitro and presented clear strain differences in multiple 
aspects [8, 9, 11, 13, 14, 40, 42, 43].

Quality control reference strain S. aureus ATCC 25923 
[13, 26, 44] and Escherichia coli ATCC 25922 [45] served 
as positive controls for the phenotypical iron assay and 
the qualitative/quantitative siderophore production 
assay, respectively. Streptococcus dysgalactiae ATCC 
43078 was used as a negative control for the qualitative 
siderophore production assay [26].

Assays
Phenotypical iron test
The phenotypical iron test, in which the ability to acquire 
iron from host-binding proteins (ferritin and lactofer-
rin) is evaluated, was performed as described in Reydams 
et  al. [13]. Briefly, the isolates were cultured overnight 
at 37  °C on Colombia blood agar with 5% sheep blood 
(CBA, Thermo Fisher Scientific). After reaching a den-
sity of 0.5 McFarland in separate 0.85% NaCl solution 
(Biomerieux), the bacterial cultures were diluted in Dul-
becco’s Phosphate Buffered Saline (Thermo Fisher Sci-
entific) (dPBS). The isolates were subsequently grown 
in four different media including, trypticase soy broth 
(TSB) (Thermo Fisher Scientific), TSB deprived of iron by 
adding a final concentration of 0.5 mM of iron chelating 
agent 2–2’bipyridyl (dTSB) (Sigma Aldrich) [46], iron-
deprived TSB supplemented with a final concentration 
of 50  μM ferritin from equine spleen (dTSBF) (Sigma 
Aldrich) [26, 36], and 0.4 mg/mL iron saturated recom-
binant human lactoferrin (dTSBL) (Sigma Aldrich) [13]. 
A 96-well microplate (Novolab) covered with a transpar-
ent seal was used for isolate growth in the different media 
for 24 h without agitation in a MultiSkan Go apparatus 
(Thermo Fisher Scientific). This allowed to measure the 

optical density (OD, 600 nm) 25 times with 1 h intervals 
to assess and quantify the bacterial growth. The incuba-
tion temperature was set at 37  °C for all isolates except 
for S. equorum, which showed optimal growth at 32  °C. 
Two replicates were taken for each isolate in the 96 well 
plate. The SkanIt 4.1 for Microplate Readers software 
(Thermo Fisher Scientific) was used for protocol input 
and recording of the results. The phenotypical iron-test 
was performed in duplicate on two independent days.

Qualitative siderophore production assay
The overlay (O) technique with chrome azurol S (CAS) 
medium (O-CAS) for siderophore detection was per-
formed with some modifications [47]. In short, the 
blue CAS dye was prepared beforehand as described 
by Louden et  al. [45] based on the original assay [48]. 
In preparation of O-CAS procedures, isolates were cul-
tured for 24 h at 37 °C on CBA. After overnight incuba-
tion, pure colonies of each isolate were added to separate 
sterile 0.85% NaCl solution (Biomerieux) until a turbidity 
equivalent of 0.5 McFarland density was reached. With a 
sterile cotton swab, the inoculum was streaked on a quar-
ter of two tryptic soy agar (TSA; Oxoid) plates. One of 
the plates was supplemented with 200  μM 2–2’ bipyri-
dyl, while the other plate was not (serving as a negative 
control). Both plates were incubated overnight. Several 
concentrations of 2–2’bipyridyl were added to the TSA 
to determine optimal siderophore production without 
causing bacterial death. The medium for a liter of over-
lay was prepared according to Shin et  al. [49]. In short, 
under stirring, 12 mL of 50% NaOH was added to 900 mL 
of  ddH2O to dissolve 30.2  g of piperazine-N–N’bis(2-
ethanesulfonic acid) (PIPES). After complete dissolution 
of PIPES in the overlay, 15 g of agarose (Sigma-Aldrich) 
was added and the overlay was autoclaved. Finally, 
100 mL of the autoclaved blue CAS dye was mixed with 
the autoclaved overlay (under stirring) and applied over 
the TSA plates with(out) 200 μM 2–2’bipyridyl contain-
ing the cultivated isolates to be tested for siderophore 
production. After a minimum period of 15 min, a change 
in color (blue to yellow) was observed in the overlaid 
medium. This assay was performed twice on two inde-
pendent days with two replicates (plates) for each isolate.

Quantitative siderophore production assay (modified 
microplate method)
Analysis of siderophore production were performed 
using the modified microplate method with some modi-
fications [50]. Briefly, 50 μL of 0.5 McFarland of each iso-
late was placed in 5 mL of Iscove’s Modified Dulbecco’s 
Medium (IMDM, Thermo Fisher Scientific) and incu-
bated at 37  °C for 48  h to induce maximal siderophore 
production. Afterwards, the supernatant was obtained 
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by centrifugation at 10 000 rpm (12 298 × g) for 10 min. 
and filter sterilized (pore size 0.2  μm) (Puradisc What-
man FP30 CA-S, Avantor Life Sciences). Supernatant 
(100 μL) of each bacterial culture was added in separate 
wells of a 96 microplate followed by the addition of 20 μL 
of autoclaved CAS dye as described above. After a 20 min 
incubation period, the optical density of each sample was 
recorded at 660  nm using the Multiskan Go microplate 
reader. Three replicates were taken for each isolate in 
the 96 well plate and siderophore production, in percent 
siderophore unit (psu), was measured according to the 
following formula [50]:

where  Ar = absorbance of reference (CAS solution with 
uninoculated broth), and  As = absorbance of sample 
(CAS solution with cell-free supernatant of sample). The 
assay was performed four times in four independent days.

Whole genome sequencing, phylogenetic trees, 
and siderophore‑related operon landscapes
The six NASM isolates (four field strains: S. chromogenes 
CCM, S. chromogenes BTM, S. equorum CCM, S. equo-
rum BTM; two comparative strains: S. chromogenes IM, 
and S. chromogenes TA) were inoculated on CBA and 
delivered to the PathoSense laboratory at Ghent Univer-
sity for processing. The samples were processed to isolate 
High-Molecular Weight DNA as previously described 
[51–53]. Samples were multiplexed on an R9.4.1 flow 
cell (ONT) and sequenced using a GridION device [52]. 
Final genome assemblies were obtained using Trycycler 
(v.0.5.3) [54], minimap2 (v2.20) [55], and medaka (v.1.7.3; 
ONT) as described already for staphylococci before 
[56]. Resulting bacterial genome assemblies were used 
in a single nucleotide polymorphism (SNP)-based phy-
logenetic inference using csi phylogeny [57] and IQtree 
(v.1.6.12) [58, 59] with –bb 1000 and -m GTR + R + I set-
tings. The Bioproject for this study is PRJNA1008278 
and the associated NCBI accession numbers are: 
CP133240-CP133241 (S. chromogenes CCM), CP133242-
CP133243 (S. chromogenes BTM), CP133235-CP133239 
(S. equorum CCM), CP133229-CP133234 (S. equorum 
BTM), CP133244-CP133246 (S. chromogenes IM), and 
CP133247-CP133248 (S. chromogenes TA).

This analysis was supplemented with complete S. 
chromogenes (n = 89) and S. equorum (n = 60) genome 
sequences as available from Naushad et  al. [35], a 
Canadian database. Also, the S. aureus ATCC 25923 
(CP009361) was included for comparison. All genomes 
were screened for siderophore and iron-uptake asso-
ciated genes using a custom protein database adapted 
from Naushad et  al. [35] and Vermassen et  al. [36] (see 

Siderophore production (psu) =

(Ar − As) x 100

Ar

Additional file  1) in Abricate (v.1.0.1) [69] with mini-
mal query coverage and amino acid homology set to 
30 and 50%, respectively. The protein sequences for 
siderophore-related and ferritin iron acquisition were 
obtained from Naushad et  al. [35] and Vermassen et  al. 
[36] with S. aureus and S. xylosus as reference, respec-
tively. The first genomic hits that met the minimum cut-
off for each individual query were selected. Trees and 
identified proteins were visualized in iTOL (v.5) [60]. To 
study the siderophore-related operon landscape, flanking 
regions (20 000 bp up- and downstream) of target genes 
were extracted using flanker (v.0.1.5) [61]. Subsequent 
sequences were annotated with Bakta (v.1.7.0) [62] and 
visualized with Clinker (v.0.0.26) [63].

Statistical analysis
Phenotypical iron test
The growth of the four field strains (S. chromogenes 
CCM, S. chromogenes BTM, S. equorum CCM, and S. 
equorum BTM), the comparative strains (S. chromoge-
nes IM, S. chromogenes TA), and the positive control S. 
aureus ATCC25923, in the different growth media was 
expressed as the area under the curve (AUC) [13]. The 
association between the AUC (outcome variable) and 
the different growth media (categorical predictor vari-
able: TSB, dTSB, dTSBF, and dTSBL) and the bacterial 
strains (categorical predictor variable) was determined 
fitting a linear mixed regression model (PROC MIXED, 
SAS version 9.4, SAS Institute Inc., Cary, NC, USA). The 
interaction term between the growth media and strains 
was tested and isolate was added as random effect to 
account for the correlation among the duplicates in the 
experiment.

Quantitative siderophore production assay
The expression of siderophores (psu; outcome variable) 
during incubation with different bacterial strains (the 
four field strains S. chromogenes CCM, S. chromogenes 
BTM, S. equorum CCM, S. equorum BTM and the two 
comparative strains: S. chromogenes IM, S. chromogenes 
TA; and the positive controls S. aureus ATCC 25923 and 
E. coli ATCC 25922; categorical predictor variable of 
main interest) was studied by fitting a linear regression 
model (PROC MIXED, SAS version 9.4) considering the 
triplicates and rounds as fixed effects.

The significance level was set at P ≤ 0.05 for both analy-
ses. In all analyses, a Bonferroni correction was applied 
to adjust for multiple comparisons.

Results
Phenotypical iron assay
Bacterial growth differed significantly between strains 
(P < 0.001) and media (P < 0.001) (Table 1). Overall, both 
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S. chromogenes field strains, CCM and BTM, presented 
a better growth across all media [Least-square means 
(LSM) of the AUC = 5.00 and 4.79, respectively] when 
compared to the S. equorum strains CCM and BTM 
(LSM = 3.51 and 4.15, respectively). When comparing 
the field strains with the comparative NASM strains, S. 
chromogenes IM presented the highest growth across all 
media that was not significantly different from the posi-
tive control S. aureus ATCC 25923 strain (LSM = 8.55; 
P = 0.92). On the other hand, S. chromogenes TA, pre-
sented lower growth than S. chromogenes CCM and 
BTM, while overall higher growth than both S. equo-
rum strains (LSM = 4.47) was observed. Strains grew the 
best on TSB (LSM = 7.45; Table  1). Media with ferritin 
as an iron source (LSM = 5.71) resulted in significantly 
better growth than dTSB (LSM = 4.35; Bonferroni-cor-
rected P < 0.001) and dTSBL (LSM = 4.80; Bonferroni-
corrected P < 0.001) across all species. Still, growth of 
the strains was influenced by the type of media (interac-
tion term between media and strains: P < 0.001; Table 1, 

Figure 1, and Additional file 2) with both S. chromogenes 
field strains, CCM and BTM, presenting significantly 
improved growth recovery with ferritin as an added iron 
source (Bonferroni-corrected P < 0.001 and Bonferroni-
corrected P = 0.003, respectively), but not with lactofer-
rin (Bonferroni-corrected P = 1.000, both) (Figures  1A, 
B). Growth of both S. equorum field strains (Figures 1C, 
D) are not significantly influenced by the different media, 
except for S. equorum CCM when comparing growth in 
TSB to dTSB (Bonferroni-corrected P = 0.0002) (Fig-
ure  1C). Regarding the comparative strains, both S. 
chromogenes IM and TA showed significant reduction 
in maximum growth in dTSB (Bonferroni-corrected 
P < 0.001, both) when compared to growth in TSB and 
growth was not significantly recovered when ferritin 
(Bonferroni-corrected P = 0.49 and P = 1.000, respec-
tively) or lactoferrin (Bonferroni-corrected P = 1.000, 
both) was added as an iron source (Figures 1E, F).

Qualitative siderophore production assay
Staphylococcus aureus ATCC 25923, S. chromogenes IM, 
S. chromogenes TA, and both S. chromogenes isolates 
from CCM and BTM exhibited yellow coloration indic-
ative for the production of iron chelators. For both S. 
equorum isolates, no iron chelator activity was observed.

Quantitative siderophore production assay
There was a significant strain effect (P < 0.001; Table  2) 
with S. aureus ATCC 25923 producing significantly 
higher amounts of siderophores [Least-square means 
(LSM) of the psu = 74.5] when compared to all NASM 
strains (Bonferroni corrected P < 0.0001). The difference 
in psu between S. aureus ATCC 25923 and positive con-
trol E. coli 25922 borders on significance (LSM = 62.5; 
P = 0.06). Overall, the S. chromogenes strains from CCM 
and BTM produced a higher amount of siderophores 
(LSM = 29.8 and 14.7, respectively) when compared to 
the S. equorum strains from CCM and BTM (LSM = 3.66 
and 3.11, respectively). Staphylococcus chromogenes from 
CCM presented a higher siderophore production when 
compared to both S. equorum strains (Bonferroni cor-
rected P = 0.007 and Bonferroni corrected P = 0.005 from 
CCM and BTM, respectively; see Additional file 3) and S. 
chromogenes TA (Bonferroni corrected P = 0.004). Both S. 
chromogenes (Bonferroni corrected P = 0.58) and S. equo-
rum (Bonferroni corrected P = 1.000) from CCM had a 
higher psu when compared to strains of the same species 
from BTM although differences between the two strains 
of the same species were insignificant. Staphylococcus 
chromogenes IM siderophore production (LSM = 21.9; 
Bonferroni corrected P = 0.09) was not significantly dif-
ferent from S. chromogenes TA (LSM = 2.1).

Table 1 Linear mixed regression model for the area under 
the curve (AUC) of the phenotypical iron assay 

a Regression coefficient.
b Standard error.
c Least square means.
d Overall P-value for fixed effect.
e P-value for differences of least square means.
f Staphylococcus chromogenes isolate causing chronic intramammary infection 
[39].
g Staphylococcus chromogenes isolate from a teat apex of a heifer [40].
h Staphylococcus chromogones isolate from composite cow milk [41].
I Staphylococcus chromogones isolate from bulk tank milk [41].
j Staphylococcus equorum isolate from composite cow milk [41].
k Staphylococcus equorum isolate from bulk tank milk [41].
l Interaction medium * strain; see Figure 1.

βa SEb LSMc Pd

Intercept 9.23 0.42  < 0.001e

Medium  < 0.001d

 TSB Ref.e – 7.45 –

 dTSB −1.21 0.57 4.35  < 0.001e

 dTSBF − 1.13 0.57 5.71  < 0.001e

 dTSBL 0.14 0.57 4.80  < 0.001e

Strain  < 0.001d

 S. aureus ATCC 25923 Ref. – 8.58 –

 S. chromogenes  IMf 1.27 0.57 8.55 0.92e

 S. chromogenes  TAg −0.61 0.57 4.47  < 0.001e

 S. chromogenes from  CCMh −1.23 0.49 5.00  < 0.001e

 S. chromogenes from  BTMi −2.75 0.49 4.79  < 0.001e

 S. equorum from  CCMj −4.25 0.49 3.51  < 0.001e

 S. equorum from  BTMk −4.17 0.49 4.15  < 0.001e

Medium *  Strainl  < 0.001d
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Whole‑genome sequencing
Phylogenetic analysis
The SNP-based WGS phylogenetic analysis (Fig-
ure  2; Additional file  4) including our field strains (S. 

chromogenes CCM, S. chromogenes BTM, S. equorum 
CCM, and S. equorum BTM), our comparative strains (S. 
chromogenes IM and S. chromogenes TA), and the Cana-
dian S. chromogenes and S. equorum isolates [40] divided 
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Figure 1 Overview of strain growth (optical density, OD600) over 24 h in different growth media. The four field strains, Staphylococcus 
chromogenes from composite cow milk (CCM) and from bulk tank milk (BTM) (A, B) and S. equorum from CCM and BTM (C, D), and the two 
comparative strains, Staphylococcus chromogenes isolates from a persistent intramammary infection (IM) and from the teat apex of a dairy heifer 
(TA) (E, F), are grown in tryptic soy broth (TSB, solid line), deferrated tryptic soy broth (dTSB, dotted line), deferrated tryptic soy broth with ferritin 
from equine spleen (dTSBF, short‑dash line), and deferrated tryptic soy broth with human recombinant lactoferrin (dTSBL, long‑dash line). All 
experiments were performed in duplicate. Different letters within each figure (A–C) indicate significant differences when applying the Bonferroni 
correction between growth media within strains (P ≤ 0.05).
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our four field isolates and two comparative isolates into 
two distinct clades: S. chromogenes TA in a separate clade 
from the other three S. chromogenes isolates (IM, CCM, 
and BTM] and the two S. equorum isolates (CCM and 
BTM] in one clade but still divergent.

Identification of siderophore‑associated genes and operon 
landscapes
Based on the WGS data of the four field strains and two 
comparative strains (Figures  2, 3), it was observed that 
all S. chromogenes and S. equorum strains, including the 
reference strain S. aureus ATCC 25923, contained all SA 
receptor hts operon proteins (htsABC). Both S. equorum 
isolates did not have a complete SA synthesis related sfa 
operon (sfaABCD) embedded in their genomes in con-
trast to the four S. chromogenes isolates (and reference 
strain S. aureus ATCC 25923). Similar to S. aureus ATCC 
25923, both S. equorum isolates showed the presence of 
both SB receptor sir operon proteins (sirABC) and SB 
synthesis-related sbn operon proteins (sbnABCDEFGHI) 
in contrast to all the S. chromogenes isolates.

Regarding the potential ferritin reductive pathway for 
iron acquisition, when using S. xylosus as reference strain, 
the four S. chromogenes isolates had protein hits for the 

three genes encoding proteins potentially contributing to 
ferritin iron acquisition: a putative oxidoreductase pro-
tein, mono-oxygenase protein, and probable membrane 
protein showing a mean of 55.4% (standard deviation, 
SD ± 0.15%), 58.7% (± 0.31%), and 66.6% (± 0.00%) amino 
acid homology, respectively. Both S. equorum isolates did 
not have a hit for the putative oxidoreductase while both 
other hits (mono-oxygenase protein and probable mem-
brane protein) showed higher protein homologies when 
compared to the S. chromogenes isolates (mono-oxy-
genase protein and probable membrane protein show-
ing a mean of 79.8% (± 0.00%) and 77.62% (± 0.00%) AA 
homology, respectively). In the S. aureus ATCC 25923 
genome, only one protein hit (putative oxidoreductase) 
was identified (60.36% AA homology).

When taking a closer look at the sfa-hts (Figure  3A) 
and sbn-sir (Figure  3B) operon landscape, we observed 
a lower protein homology between species (~50%) but 
near 100% protein match between strains of the same 
species. Interestingly, a zinc-binding hydrogenase, metal-
dependent hydrolase, and iron-sulfur cluster carrier pro-
tein were identified in the vicinity of the hts-sfa operons. 
Ferrous iron transport-related proteins (Feo A and FeoB) 
[64] were identified in S. chromogenes TA (Figure 3B) and 
in the S. equorum genomes also a heme oxygenase was 
identified (Figure  3A). Even though the sir-sbn operons 
were only complete in S. aureus and S. equorum strains, 
the four S. chromogenes genomes also showed pro-
tein homologs of both sirB and sirC. The latter proteins 
showed again the presence of various iron-associated 
proteins, including hrtA, hrtB, and ferichrome transport 
ATP-binding protein (Figure 3B).

Discussion
Our study integrated the phenotype and genotype of dif-
ferent bovine-associated NASM strains when assessing 
their iron metabolism. By doing so, we observed substan-
tial differences between species and strains. In the pheno-
typical iron assay, ferritin was an effective iron source for 
growth recovery in iron-deficient media for the S. chro-
mogenes CCM and BTM strains. This finding was further 
supported by the examination of potential ferritin iron 
acquisition genes based on WGS data, as all S. chromo-
genes strains displayed hits for all three proposed ferritin 
reductive pathway genes. For the qualitative siderophore 
production assay, a color change was observed in all 
strains except for S. equorum, suggesting the latter spe-
cies does not produce siderophores. This observation is 
further supported by the quantitative assay, in which this 
species produced little or negligible amounts of sidero-
phores when compared to S. aureus and S. chromoge-
nes. The WGS analysis revealed that all tested strains, 
except for S. equorum, possess complete SA-synthesis 

Table 2 Linear mixed regression model for the percentage 
siderophore units (psu) of the quantitative microplate 
analysis 

a Regression coefficient.
b Standard error.
c Least square means.
d Overall P-value for fixed effect.
e P-value for differences of least square means.
f Staphylococcus chromogenes isolate from composite cow milk [41].
g Staphylococcus chromogenes isolate from bulk tank milk [41].
h Staphylococcus equorum isolate from composite cow milk [41].
i Staphylococcus equorum isolate from bulk tank milk [41].
j Staphylococcus chromogenes isolate causing chronic intramammary infection 
[39].
k Staphylococcus chromogenes isolate from a teat apex of a heifer [40].

Quantitative analysis

βa SEb LSMc Pd

Intercept 62.0 4.37  < 0.001d

Strain  < 0.001d

 E. coli ATCC 25922 Ref. – 62.52 –

 S. aureus ATCC 25923 12.02 6.07 74.53 0.0594e

 S. chromogenes  CCMf −32.71 6.07 29.80  < 0.001e

 S. chromogenes  BTMg −47.73 6.07 14.79  < 0.001e

 S. equorum  CCMh −58.85 6.07 3.66  < 0.001e

 S. equorum  BTMi −59.40 6.07 3.12  < 0.001e

 S. chromogenes  IMj −40.65 6.07 21.86  < 0.001e

 S. chromogenes  TAk −60.41 6.07 2.10  < 0.001e
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Figure 2 Siderophore‑associated protein homology in diverse NASM isolates. Presence of siderophore‑associated proteins within S. 
chromogenes isolates [from a persistent intramammary infection (IM), the teat apex of a dairy heifer (TA), composite cow milk (CCM) and bulk 
tank milk (BTM)] and S. equorum isolates (from CCM and BTM) highlighted in pink, including 100 isolates (S. chromogenes = 83, S. equorum = 17) 
from the Mastitis Pathogen Collection of the Canadian Bovine Mastitis and Milk Quality Research Network (CBMQRN) [35], and quality control 
reference strain S. aureus ATCC 25923. An ML tree (1000 ultrafast bootstraps) representing phylogenetic relationship of S. chromogenes, S. equorum, 
and quality control strain S. aureus ATCC 25923 on whole genome SNP level with the S. aureus ATCC 25923 (CP009361) as reference. The final 
phylogenetic tree was annotated with the presence of siderophore‑ and ferritin‑related protein hits across genomes. Color coded (blue‑red) 
represents amino acid homology of the identified proteins as compared to the NCBI siderophore‑ and ferritin‑related protein hits. Only hits 
with amino acid homology above 30% and 50% query coverage are shown.
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and export sfa operons, which could explain the phe-
notypic absence of siderophore production in both S. 
equorum strains. When analyzing the sfa-hts and sbn-sir 
operon landscapes for all strains, some interspecific vari-
ation in protein identities responsible for iron acquisition 
were observed but between strains of the same species 
the siderophore-related proteins are conserved. The 
results contribute to the currently limited understanding 
of the genetic elements associated with bovine NASM 
pathogenesis.

Importantly, the iron-metabolism related virulence 
genes profiles of our six NASM isolates (four field strains 
and two comparative strains) coincides with the virulence 
gene profiles of S. chromogenes and S. equorum isolates 
from a vast collection of Canadian [65] bovine isolates 
based on comprehensive WGS data. It must however, be 
taken into consideration that the protein sequences for 
iron acquisition reported in this study were based on spe-
cific criteria described in a previous study (i.e., applying 
a minimum of 30% amino acid identity and 50% query 

Figure 3 Siderophore‑related sfa‑hts (A) and sbn‑sir(B) operon landscapes. Operon landscapes for the four field strains, Staphylococcus 
chromogenes from composite cow milk (CCM) and from bulk tank milk (BTM) and S. equorum from CCM and BTM, the two comparative strains, 
S. chromogenes isolated from a persistent intramammary infection (IM) and from the teat apex of a dairy heifer (TA), and positive control, 
Staphylococcus aureus ATCC 25923.
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coverage) [35]. This means that the results obtained from 
these isolates may not be the same as when applying a 
higher cut-off for protein sequence homology as done 
in other studies [53, 56, 66]. Nevertheless, our findings 
combined with in  vitro phenotypical iron assays offer 
novel insights into iron acquisition of ecologically differ-
ent bovine-associated NASM species.

When assessing the growth curves of the four field 
strains, S. chromogenes CCM, S. chromogenes BTM, S. 
equorum CCM, and S. equorum BTM, and the two com-
parative strains, S. chromogenes IM and TA, in the four 
different growth media, all strains appear to have distinct 
phenotypic growth patterns. This observation is sup-
ported by the reported significant strain effect on bac-
terial growth and aligns with a previous study initially 
reporting significant strain differences between S. chro-
mogenes IM and TA in the phenotypical iron assay [13]. 
Interestingly, both S. chromogenes strains from CCM and 
BTM demonstrated a significant ability to utilize ferri-
tin for growth recovery, which was not observed in the 
S. equorum strains and the two comparative S. chromo-
genes strains. Although the initial differences in growth 
in different media may seem negligible, we observed 
phenotypic variations in the lag phase of S. equorum 
from CCM, suggesting a potential adaptation to utiliz-
ing iron-bound proteins to support growth. On the other 
hand, comparative strain S. chromogenes IM did not show 
significant growth recovery with iron supplementation 
under iron-deprived conditions this time, indicating 
that this specific strain might be less adaptable to iron-
deprived circumstances than previously hypothesized 
[13]. However, it is worth noting that the AUC for S. chro-
mogenes IM in dTSB media was higher than in the afore-
mentioned study, suggesting that our strain was indeed 
able to adapt to iron-deprived media to a certain degree, 
possibly by sufficiently maintaining intracellular iron lev-
els for proliferation [36]. As for S. chromogenes TA, our 
findings once again demonstrated the strain’s inability to 
exploit multiple iron sources.

It is generally accepted that the siderophore SA synthe-
sis and transport related operons are found in most staph-
ylococcal genomes, while the siderophore SB synthesis 
and transport related operons are predominantly found 
in the genomes of S. aureus [18]. The presence of the sfa 
operon was confirmed for all S. chromogenes and S. equo-
rum isolates; however our S. equorum isolates appear to 
contain a deletion of the sfaA gene, an efflux transporter 
responsible for the export of SA into the extracellular 
milieu [67]. Interestingly, in contrast to the S. chromoge-
nes strains, for all S. equorum strains, a complete 9-gene-
sfa-operon was identified. When examining siderophore 
production, phenotypically S. aureus ATCC 25923 and 
all S. chromogenes isolates were positive for siderophore 

production in the qualitative assay with S. aureus pro-
ducing the highest amount of siderophores followed by 
the S. chromogenes isolates in the quantitative assay. This 
was expected for S. aureus as they are known siderophore 
producers with SB the most robustly upregulated within 
the iron-restricted host [18]. In our study, 100% AA hits 
was found for all studied iron acquisition genes in the 
genotype of the quality control strain S. aureus ATCC 
25923 when compared to the S. aureus reference strain 
used in WGS. Staphylococcus chromogenes in general 
presented quantitatively a lower and higher siderophore 
production than S. aureus and S. equorum, respectively. 
This was expected, because the S. chromogenes strains 
are considered to be “host-adapted” in an ecological con-
text and carry all SA-related genes, including the sfaA 
gene for SA export. It is speculated that SA synthesis has 
a limited ability to transport iron into the cells [21] and 
in contrast to SB, its production is severely hampered in 
iron-limited, glucose-containing media [18]. Serum has 
a lower iron and higher glucose content when compared 
to, for example, the skin, which would elucidate the lower 
siderophore production of our NASM strains when com-
pared to S. aureus ATCC25923 and support the general 
consensus of NASM species as commensals rather than 
invasive. Interestingly, both S. chromogenes isolates from 
IM and CCM appear to have a higher siderophore pro-
duction when compared to the isolates from TA and 
BTM. Even though these differences were statistically 
not significant, when taking a closer look at the sfa-hts 
operon landscape, we again see variation in genes around 
the siderophore-associated genes for S. chromogenes TA 
when compared to the other S. chromogenes strains from 
IM, CCM, and BTM. This variation could be part of the 
reason this strain has presented different characteristics 
when compared with the IM strain in multiple assays [8, 
9, 11, 13, 14, 40, 42, 43]. Notably, the S. equorum strains 
had hits for all SB genes and consequently, one would 
anticipate that the strains within this species would be 
strong siderophore producers similar to S. aureus ATCC 
25923. However, based on our findings, S. equorum iso-
lates did not exhibit high production of siderophores. It is 
conceivable that the in vitro assay might lack the required 
sensitivity to detect SB synthesis effectively or that the 
sbn-sir operon is not being expressed under the current 
experimental conditions. Additionally, it is also plausible 
that these proteins related to SB production have under-
gone functional divergence in these strains. The latter 
however, seems unlikely because although we can see an 
evolutionary change based on the phylogenetic hits (% 
AA identity), the sfa-hts and sbn-sir operons are likely to 
share significant functional similarities. When consider-
ing the proteins adjacent to the sbn-sir operon protein, 
there is significant variation in genes present between S. 
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aureus ATCC 25923 and both S. equorum isolates which 
could explain our observed lack of siderophore produc-
tion in S. equorum.

Regarding ferritin iron acquisition, we observed sig-
nificant growth recovery for both S. chromogenes field 
strains and visually, a shortened lag phase for S. equo-
rum CCM, which would suggest that a mechanism is 
present to access ferritin iron. The phylogenetic protein 
hits for the proposed model responsible for ferritin iron 
acquisition, would appear to support the phenotypes we 
observed. Although we did not observe complete hits for 
S. equorum and S. aureus ATCC 25923, our findings do 
not necessarily exclude the capability of these isolates to 
acquire ferritin iron. Either the reference strain was not 
sufficient to make comparisons or other mechanisms for 
ferritin iron acquisition might be employed.

Performing SNP-based phylogenetic inference and sup-
plementing the current data with WGS data of bovine-
associated S. chromogenes and S. equorum isolates from 
a Canadian study provided new insights in the genetic 
diversity and strain-relatedness of bovine-associated S. 
chromogenes and S. equorum. The S. chromogenes iso-
lates, specifically IM and TA were, in line with previous 
studies applying MLST strain typing schemes [68], con-
firmed to be two unique strains, as well as belonging to 
two distinct genomic clades when including the collec-
tion of Canadian bovine S. chromogenes isolates. The 
two S. chromogenes isolates from CCM and BTM were 
found to belong to the same clade as the S. chromogenes 
IM isolate. Similar to a previous study that utilized RAPD 
strain typing [41], it was confirmed that these isolates are 
distinct strains with a significant distance in the phylo-
genetic tree between them. For the S. equorum isolates, 
WGS confirmed the isolates to be of two different strain 
types previously determined with RAPD-PCR [41] albeit 
with a closer relationship in the phylogenetic tree than 
the S. chromogenes isolates.

Collectively, our study emphasizes the importance of 
complementing the analysis of putative virulence factor 
genes with phenotypic testing. While our findings mainly 
highlight differences at the species level, we observed dis-
tinct interstrain growth and we still believe it is essential 
to consider strain-level variation within species when 
assessing NASM. Although our sample size was lim-
ited, we believe our findings provide a groundwork for 
future research on the importance of NASM for udder 
health and by extension, animal and public health. Fur-
thermore, it is crucial to understand the mechanism of 
iron acquisition in NASM and the genetic basis under-
lying it. There are other iron acquisition mechanisms 
worth exploring, such as the uptake of heme–iron from 
hemoglobin, an important iron source for S. aureus 
and contributes significantly to pathogenesis (34). Our 

preliminary data on heme–iron acquisition genes (data 
not shown) for the strains in our study suggests that this 
mechanism is unlikely to be utilized by them. However, 
a different NASM species, (human-associated) Staphy-
lococcus lugdunensis, was recently discovered having a 
functional heme–iron uptake system (34). These findings 
underscores the variability in iron acquisition strategies 
among different staphylococcal species and could have 
implications for their ecological niches and pathogenic 
potential. This knowledge is essential for understanding 
the relevance of these organisms to udder health and for 
addressing the growing threat of antimicrobial resistance, 
as these pathways may provide an alternative avenue for 
therapeutic approaches in treating mastitis.
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