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Abstract

designing immunodiagnostic targets for PHF.

Neorickettsia risticii is the Gram-negative, obligate, and intracellular bacterial pathogen responsible for Potomac
horse fever (PHF): an important acute systemic disease of horses. N. risticii surface proteins, critical for immune
recognition, have not been thoroughly characterized. In this paper, we identified the 51-kDa antigen (P51) as a
major surface-exposed outer membrane protein of older and contemporary strains of N. risticii through mass
spectrometry of streptavidin-purified biotinylated surface-labeled proteins. Western blot analysis of sera from
naturally-infected horses demonstrated universal and strong recognition of recombinant P51 over other
Neorickettsia recombinant proteins. Comparisons of amino acid sequences for predicted secondary structures of
P51, as well as Neorickettsia surface proteins 2 (Nsp2) and 3 (Nsp3) among N. risticii strains from horses with PHF
during a 26-year period throughout the United States revealed that the majority of variations among strains were
concentrated in regions predicted to be external loops of their B-barrel structures. Large insertions or deletions
occurred within a tandem-repeat region in Ssa3. These data demonstrate patterns of geographical association for
P51 and temporal associations for Nsp2, Nsp3, and Ssa3, indicating evolutionary trends for these Neorickettsia
surface antigen genes. This study showed N. risticii surface protein population dynamics, providing groundwork for

Introduction

Discovered in 1984, Neorickettsia (formerly Ehrlichia) ris-
ticii is an obligate intracellular bacterium and the causative
agent of Potomac horse fever (PHF) [1-3]. The bacterium
uses a digenetic trematode to survive and proliferate in its
natural lifecycle [4-9]. It is through accidental ingestion
of the metacercarial stage of the digenetic trematode
within its insect host that the horse becomes infected with
N. risticii and develops PHF [6]. PHF is an acute, severe,
and potentially fatal disease of horses, normally contracted
during the summer months in North America when aqua-
tic insect larvae infested with N. risticii-infected digenetic
trematodes molt and emerge (hatch) from the water as
adults [6,10]. Clinical signs range from mild (anorexia,
fever, lethargy, and depression) to life-threatening (lamini-
tis, abortion, and diarrhea followed by severe dehydration)
[10,11]. The administration of tetracyclines at the early
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stage of infection is effective, in part by inhibiting bacterial
protein synthesis and facilitating lysosome fusion with
inclusions containing N. risticii [12-15]. Diagnosis of this
disease is mainly done by indirect fluorescent-antibody
(IFA) test based on N. risticii-infected cells and by nested
polymerase chain reaction (PCR) on blood samples
[5,16-22]. The only available vaccines are bacterins using
the 1984 N. risticii type strain, which demonstrate inade-
quate efficacy [23,24].

It was determined that N. risticii has similar genetic,
antigenic, and morphologic characteristics to Neorickett-
sia helminthoeca [25,26], which were the major reasons
it, as well as Neorickettsia (formerly Rickettsia, Ehrlichia)
sennetsu, was regrouped into the genus Neorickettsia
[27]. In addition, the bacterial parasite, known as the Stel-
lantchasmus falcatus (SF) agent, isolated from metacer-
cariae in fish from Japan and Oregon [28-30] belongs to
this group. N. risticii also consists of a variety of strains,
based on PCR and sequencing of 16S RNA and groEL,
Western blot analyses using purified bacteria as antigen,
and morphology [20,22,24,31].
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Little is known about N. risticii surface-exposed pro-
teins, and this missing information is crucial in the under-
standing of bacterium-host cell interactions. Antigenic and
potential surface proteins ranging between 28 and
110-kDa in mass were previously detected by Western
blotting, but these proteins were not identified [32].
Immunoprecipitation of N. risticii labeled with I'** and N.
risticii immune mouse sera revealed potential surface pro-
teins ranging from 25 to 62-kDa in mass, although these
proteins were not identified [33]. Antigenic proteins of 70,
55, 51, and 44-kDa masses have been demonstrated utiliz-
ing recombinant proteins; again the proteins were not
identified [34]. Two highly-immunodominant proteins in
two N. risticii strains were identified as GroEL and the 51-
kDa antigen (P51) [35], but it was not shown whether
these proteins were surface exposed. Strain-specific anti-
gen (Ssa) was suggested as a surface immunogenic protein
with potential use in vaccine production, although it was
not determined to be bacterial surface exposed [24,36].

The identification of Neorickettsia proteins is now achiev-
able with the availability of whole genome sequencing data
on both the type strain (Miyayama) of N. sennetsu [37] and
the type strain (Illinois) of N. risticii [38]. In this paper, we
determined 1) major surface proteins by proteomics analy-
sis on N. risticii, 2) horse immune recognition of N. risticii
surface proteins, and 3) strain variations in aligned
sequences of these major surface proteins with respect to
their predicted secondary structures.

Materials and methods

Culturing and isolation of N. risticii strains

N. risticii llinois” [3] and a Pennsylvania strain (PA-1) [6]
were cultured in P388D; cells in 75-cm? flasks containing
RPMI 1640 (Mediatech, Inc., Herdon, VA, USA) supple-
mented with 5-10% fetal bovine serum (FBS) (U.S. Bio-
technologies, Inc., Pottstown, PA, USA) and 4-6 mM
L-glutamine (Invitrogen, Carlsbad, CA, USA) at 37°C
under 5% CO,. N. risticii was isolated from highly-infected
P388D; cells as previously described for N. sennetsu
Miyayama" [39].

Biotinylation and streptavidin-affinity purification of N.
risticii surface proteins

Biotinylation of purified N. risticii Illinois and PA-1 from
twenty-five 75-cm? flasks using EZ Link Sulfo-NHS-SS-
Biotin (Pierce Biotechnology, Rockford, IL, USA) and sub-
sequent bacterial lysis and collection of solubilized bacter-
ial proteins were performed as previously described [39].
Streptavidin purification of Sulfo-NHS-SS-Biotinylated
N. risticii proteins was then performed, followed by SDS-
polyacrylamide gel electrophoresis (PAGE) and fixation
and GelCode blue (Pierce) staining of the gel [39]. Proteins
from seven bands from N. risticii lllinois and proteins
from four bands or band collections from PA-1 were
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identified by capillary-liquid chromatography-nanospray
tandem mass spectrometry (Nano-LC/MS/MS) as pre-
viously described [40].

Western blotting using recombinant proteins
Recombinant P51 (rP51, 57 kDa), cloned from N. risticii
Ilinois (NRI_0235), and rNsp2 (35 kDa) and rNsp3 (28
kDa), cloned from N. sennetsu Miyayama (NSE_0873 and
NSE_0875, respectively), were expressed by transformed
BL21(DE3) cells using isopropyl-f-D-thiogalactopyrano-
side induction and His-tag purified as described previously
[30,39]. Recombinant GroEL (55 kDa), derived from
N. sennetsu Miyayama (NSE_0642), was acquired from
stored aliquots [41]. Fifty ug of each recombinant protein
were separated by SDS-PAGE, transferred to nitrocellulose
membranes, and cut into strips. Western blotting was then
performed on these strips using 1:500 dilutions of known
positive horse sera samples as determined by IFA [16,21].
The membrane was subsequently incubated with a 1:1000
dilution of horseradish peroxidase-conjugated goat
anti-horse (Kirkegaard & Perry Laboratories, Inc.,
Gaithersburg, MD, USA) as secondary antibody. Enhanced
chemiluminescence (ECL) LumiGLO chemiluminescent
reagent (Pierce) and a LAS3000 image documentation sys-
tem (FUJIFILM Medical Systems USA, Stamford, CT,
USA) were used to visualize the protein bands with 300 s
exposure. Bands were aligned using Precision Plus pre-
stained protein standards (Bio-Rad Laboratories, Hercules,
CA, USA).

Polymerase chain reaction, sequencing, and sequence
alignment

DNA was purified from buffy coats of PHF-positive horses
or cultures of N. risticii in P388D; cells using the DNeasy
Blood and Tissue Kit (QIAGEN, Valencia, CA, USA),
according to manufacturer’s instructions. PCR amplifica-
tion was then performed using either Phusion or Taq
DNA polymerase (New England BioLabs, Ipswich, MA,
USA) and primers designed for conserved regions through
alignment of multiple Neorickettsia spp. and/or N. risticii
strains (see Additional file 1). Sequencing was performed
by The Ohio State University Plant-Microbe Genomics
Facility. Sequences containing whole genes or gene frag-
ments were translated and aligned mainly through the
CLUSTAL W (slow/accurate) method in the MegAlign
program of DNAStar (DNAStar, Madison, W1, USA); P51
was first aligned by CLUSTAL V (PAM250) method, and
Ssa3 was aligned both by CLUSTAL W and manually.
External loops were also aligned separately by CLUSTAL
W for both P51 and Nsp3. Amino acid (aa) variations in
N. risticii strains and other Neorickettsia spp. for all pro-
teins were determined in relation to N. risticii Illinois. Pro-
tein alignments of the same size (including deletions as
dashes) were analyzed by PHYLIP (v3.66) to obtain
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bootstrap values for 1000 replicates (using the programs
SeqBoot, Protdist, Neighbor, and Consense) and to create
dendrograms (using the programs Protdist, Neighbor, and
Drawgram) [42]. Protein properties, including antigenicity
profiles and B-sheet predictions were determined using
the Protean program (DNAStar). Gene and protein
sequence homologies were also demonstrated using Basic
Local Alignment Search Tool (BLAST) algorithms, includ-
ing blastn, protein-protein blastp, and blastp [43,44].

Prediction of secondary structures

Predictions for Nsp2 and Nsp3 were based on a combi-
nation of the programming algorithm in the PRED-
TMBB web server [45], hydrophobicity and hydrophobic
movement profiles [46], and DNAStar MegAlign
(DNAStar, Madison, WI, USA) alignment and analyses
of all available N. risticii strain and Neorickettsia spp.
sequences.

GenBank Accession Numbers

GenBank accession numbers of all sequences deter-
mined in this study are shown in Table 1. P51
sequences previously deposited in GenBank used in this
study are listed in Table 2. Nsp2 sequences include N.
risticii lllinois (NRI_0839, YP_003082043) and N. sen-
netsu Miyayama (YP_746740). Previously-deposited
Nsp3 sequences include N. risticii Illinois (NRI_0841,
YP_003082045) and N. sennetsu Miyayama (YP_506742).
Ssa3 sequences include N. risticii Illinois (NRI_0872,
YP_003082075) and N. sennetsu Miyayama (NSE_0908,
YP_506773). The Ssal sequence is from N. risticii Illi-
nois (NRI_0870, YP_003082073), and other Ssas are
from 25-D (AAC31427) and 90-12 (AAC31428).

Results

Nano-LC/MS/MS of streptavidin-affinity purified surface
proteins

Given that only the N. risticii Illinois genome (NC_013009)
has been sequenced [38], these data were used for proteo-
mic analyses. Four N. risticii proteins in N. risticii Illinois
(1984 isolate) and five N. risticii proteins (with conserved
peptide sequences in relation to N. risticii Illinois) in PA-1
(2000 isolate) contained two or more peptide queries iden-
tified by Nano-LC/MS/MS (Table 3). Proteins identified
for N. risticii Illinois were P51, GroEL (NRI_0614), Nsp3,
and a conserved hypothetical protein (NRL_0567). The lar-
gest protein coverage and the largest number of peptides
identified were both from P51. Proteins identified in PA-1
also included P51 and GroEL; the largest number of pep-
tides was from P51. Minor proteins identified in PA-1
strain were DnaK (NRI_0017), ATP synthase F1, alpha sub-
unit (AtpA, NRI_0132), and strain-specific antigen 3 (Ssa3,
NRI_0872).
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Immune recognition of major surface antigens by PHF-
positive horse sera

Bacterial surface-exposed proteins are generally major
antigens [47]. Though only Nsp3 was detected on the sur-
face of N. risticii 1llinois by nano-LC/MS/MS, rNsp2 was
included in the Western blotting studies because both
Nsp3 and Nsp2 from N. sennetsu Miyayama are significant
surface proteins (Figure 1, Table 4) [39]. All 15 PHF-posi-
tive samples demonstrated recognition of rP51, with 11
out of 15 sera having strong recognition. N. sennetsu
Miyayama GroEL is 98% identical to N. risticii Illinois
GroEL, and antisera to rGroEL of N. sennetsu cross-reacts
with GroEL from multiple species of Rickettsiales, includ-
ing N. risticii [41]. Six out of 15 PHF-positive serum sam-
ples demonstrated strong reactivity to rGroEL, with the
rest having weak to no reactivity. Nsp2 and Nsp3 from
N. sennetsu Miyayama are 83% and 84% identical to Nsp2
and Nsp3 from N. risticii Illinois, respectively, using pro-
tein-protein blastp. Only one serum sample reacted
strongly to rNsp2, with the rest having weak to no reactiv-
ity. Three sera reacted strongly to rNsp3, with the rest
having weak to no reactivity. All negative controls did not
recognize any of the recombinant proteins.

Sequence variation in P51

P51 sequences are known to be strain variable [5,30].
Since P51 was found to be the major target of horse
immune recognition, we examined in which part of the
P51 molecule sequence variations occur. N. sennetsu P51
was predicted to have 18 transmembrane -barrel proteins
with nine external loops [39]. N. sennetsu and the SF
agent, which are closely-related to N. risticii [28,30,48]
were included for comparison. P51 alignments of a total of
52 sequences and sequence fragments from N. risticii dur-
ing a 26-year period throughout the United States revealed
high variability within regions corresponding to external
loops 2 and 4 (Figure 2). Forty-three P51 sequence frag-
ments (aa 136-176) containing most of external loop 2 (aa
120-176), and 36 P51 sequence fragments (aa 259-286)
containing the entire external loop 4 were analyzed using
PHYLIP (Figure 3a and 3b). Both loops 2 and 4 created
patterns of clustering for sequences from states in the
Eastern and Midwestern United States (East/Midwest US)
and sequences from Japan, Malaysia, and US states bor-
dering the Pacific Ocean (Pacific coast). The California
strain Doc and the Ohio strain 081 did not follow this pat-
tern, both being in East/Midwest US for external loop 2
and in Pacific coast for external loop 4. In external loop 2,
N. risticii 1llinois was only loosely associated with the
other East/Midwest US sequences; in external loop 4, N.
risticii Illinois tightly clustered with several East/Midwest
US sequences. External loop 4 of 081 clustered with the
SF agent strains rather than with other N. risticii strains.
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Table 1 Sequences amplified for Neorickettsia

Sample ID? Location/Year Fragment size (bp)b Gene(s) amplified® Accession no.
PA-1 Pennsylvania/2000 2091 nsp2, nsp3 HQ857586
765 ssal (p) HQ857584
1812 ssa3 HQ857585
Herodia Pennsylvania/1999 673 p51 (p) HQ857589
2133 nsp2, nsp3 HQ857588
1460 ssas HQ857587
081 Ohio/1991 2420 nsp2, nsp3 HQ857591
717 ssa3 (p) HQ857590
MN Minnesota/2002 676 p51 (p) HQ857594
2156 nsp2, nsp3 HQ857593
1029 ssa3 (p) HQ857592
ov Kentucky/1993 2103 nsp2, nsp3 HQ857596
863 ssa3 HQ857595
IA03-1 lowa/2003 1550 nsp2 (p), nsp3 HQ875741
ILOT-1 lllinois/2001 623 nsp2 (p) HQ875742
489 nsp3 (p) HQ875743
INOT-1 Indiana/2001 1879 nsp2 (p), nsp3 HQ875744
INO2-1 Indiana/2002 2052 nsp2 (p), nsp3 HQ875745
INO2-2 Indiana/2002 542 p51 (p) HQ875747
733 nsp3 (p) HQ875746
INO3-1 Indiana/2003 542 p5T1 (p) HQ906674
2110 nsp2, nsp3 HQ906673
INO3-2 Indiana/2003 1361 nsp2, nsp3 (p) HQ906675
KY03-1 Kentucky/2003 673 p51 (p) HQ906678
594 p51 (p) HQ906679
306 p571 (p) HQ906680
2095 nsp2, nsp3 HQ906677
1129 ssa3 (p) HQ906676
KY03-2 Kentucky/2003 1398 nsp2, nsp3 (p) HQ906681
KY03-3 Kentucky/2003 1042 nsp2 (p), nsp3 (p) HQ906682
OHO07-1 Ohio/2007 259 p51 (p) HQ906685
721 ssal (p) HQ906683
1739 ssas HQ906684
OHO7-2 Ohio/2007 259 p51 (p) HQ906686
OHO07-3 Ohio/2007 1558 nsp2 (p), nsp3 (p) HQ906688
995 ssa3 (p) HQ906687
OHO07-4 Ohio/2007 654 p51 (p) HQ906691
1118 nsp2 (p), nsp3 (p) HQ906690
1029 ssa3 (p) HQ906689
OH10-1 Ohio/2010 768 ssa3 (p) HQ906692
OH10-2 Ohio/2010 660 p51 (p) HQ906693
TNO2-1 Tennessee/2002 676 p51 (p) HQ906695
622 p51 (p) HQ906696
1893 nsp2 (p), nsp3 HQ906694
SF Oregon Oregon/2004 1 nsp2 HQ906697
842 nsp3 HQ906698
370 ssa3 (p) HQ906699

?All samples, except for PA-1 and SF Oregon are from naturally-infected horses. PA-1 is an isolate from an experimental equine infection utilizing N. risticii-
infected insects from Pennsylvania [6]. Both 081 and OV are strains of N. risticii previously described and with unique morphologies and sequences [5,20,22]. SF
Oregon is a strain of the Stellantchasmus falcatus agent [30].

PThe largest fragment size acquired containing the given gene(s) is shown. Multiple fragments may be present for a sample.
“p, partial sequence for the given gene was obtained.
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Table 2 GenBank P51 sequences used in this study

Sample ID Accession no. Sample ID Accession
a no.
N. risticii lllinois" YP_003081464 11908 AAL79561
PA-1 AAM18377 SF Hirose AAL12490
PA-2 AAM18376 SF Oregon AAR23988
Eclipse AACO01597 Dr. Pepper AACO1596
SqCaddis AAM18381 Ms. Annie AACO1599
SgMouse AAM18380 SHSN-1 AAB95417
S21 AAGO03352 SHSN-2 AAB95418
TW2-1 AAR22503 SRC AAB95419
TW2-2 AAR22504 SCID/CB17 AAG09962
25-D AAB46983 Snail 2121 AAF20073
90-12 AAB46982 CF1-snail 2121 AAF20072
CM1-1 AAR22501 Shasta-horse AAF43112
081 AAGO3354 Caddis-1 AAF26718
ov AAGO3353 Caddis-2 AAF26748
Doc AACO1595 Siskiyou horse-  AAF20069
1
Oregon AAC01600 Siskiyou horse-  AAF20070
2
N. sennetsu YP_506136 Siskiyou horse-  AAF20071
!\/HyayamaT 3
Kawano AAR23991 Juga-1 AACO1598
Nakazaki AAR23990 Stonefly-1 AAF26749

?All sequences listed are P51 sequences that have been previously deposited
in GenBank. N. sennetsu Miyayama P51 is NSE_0242.

Sequence variation in Nsp2

Nsp2 sequences of N. risticii, other than the sequence
from N. risticii lllinois, have not been determined. Nsp2
was predicted to have eight transmembrane -barrel
domains with four external loops. A total of 20 Nsp2
proteins and protein fragments were aligned. Amino
acid variations were determined in relation to N. risticii
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Illinois. Variations mainly occurred in external loops,
with the most variation occurring within external loop 4
(Figure 4a). Full-length Nsp2 (including the signal pep-
tide), with 11 sequences total, as well as the external
loop 4 region (aa 244-297) with 19 sequences total were
analyzed by PHYLIP (Figure 4b and 4c). For full-length
Nsp2 and external loop 4, most N. risticii strains
obtained after the year 2000 (post-2000 strains, Table 1)
were 100% identical, whereas other strains were more
diverse (Figure 4b and 4c). Nsp2 for both N. risticii Illi-
nois and Herodia (which were 100% identical) were
unique to all other N. risticii strains. For full-length
Nsp2, 081 clustered with SF Oregon, rather than with
other N. risticii strains. Additionally, external loop 2
(also demonstrating high variation) showed similar pat-
terns of clustering as seen in full-length Nsp2 and exter-
nal loop 4; the exceptions were MN, which was 100%
identical to N. risticii Illinois and Herodia, and OH07-4,
which had one amino acid difference in comparison to
the majority of post-2000 strains in this region (data not
shown).

Sequence variation in Nsp3

Nsp3 sequences of N. risticii, except for the sequence
from N. risticii Illinois have also not been determined.
Nsp3 was predicted to have eight transmembrane B-bar-
rel proteins with four external loops. Alignment of a total
of 21 Nsp3 proteins and protein fragments demonstrated
the highest variation within predicted external loop 2, yet
there was less variation in the C-terminal region com-
prising external loops 3 and 4 (Figure 5a). Fourteen full-
length Nsp3 sequences (including signal peptides) and 17
external loop 2 regions (aa 102-136) were analyzed by
PHLYIP (Figure 5b and 5c). As seen in Nsp2, N. risticii

Table 3 Proteomics-identified proteins for two N.risticii strains

a

Locus ID Protein name Mol Mass (kDa) pl % (query) peptide coverageb Signal peptide®
N. risticii lllinois"

NRI_0235 51-kDa antigen (P51) 549 844 492 (139) Yes (20-21)
NRI_0614 Heat shock protein 60 (GroEL) 58.1 523 43.2 (36) No
NRI_0841 Neorickettsia surface protein 3 (Nsp3) 25.7 596 120 (2) Yes (24-25)
NRI_0567 Conserved hypothetical protein 50.9 426 9.85 (2) No

PA-1

NRI_0235 P51 549 844 346 (41) Yes (20-21)
NRI_0614 GroEL 58.1 523 45.6 (36) No
NRI_0017 Heat shock protein 70 (DnaK) 68.4 5.18 2.20 (6) No
NRI_0132 ATP synthase F1, alpha subunit (AtpA) 55.9 529 2.75 (3) No
NRI_0872 Strain-specific surface antigen 3 (Ssa3) 419 6.01 236 or 4724 (2) No

“Theoretical isoelectric point of the given protein as predicted by ExPASy Compute pl/MW tool [64].
PIndicates percentage coverage of proteins by all peptides. Numbers in parentheses are the number of peptide queries for each protein identified in the given

band.

Signal peptide presence as determined by the Center for Biological Sequence Analysis SignalP v.3.0 [65]. Parentheses indicate amino acids between which

cleavage is predicted to occur in the given protein.

%The peptide detected twice was within the repeated region of Ssa3, therefore the percentage coverage could be two different percentages.
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Figure 1 Western blotting against rP51, rGroEL, rNsp2, and rNsp3 using PHF-positive equine sera. Recombinant P51, rGroEL, rNsp2, and
rNsp3 were separated by SDS-PAGE and probed with 1:500 dilution of PHF-positive horse sera (PHF sera, 1-15) and negative sera (Neg sera, N1-
N3). Molecular masses are shown for each recombinant protein. Information regarding the sera samples is given in Table 4.

NN DI O

Ilinois had marked differences to other sequences, in
particular to most post-2000 strains (Table 1). TN02-1
and ILO1-1 had the highest similarity to N. risticii lllinois.

Sequence variation in Ssa3

Ssa3 sequences of N. risticii, other than that of N. risticii
Illinois have not been ascertained. Ssa3 was included in
the analysis, since unknown Ssas were previously
reported as major N. risticii surface antigens in the 1984
Maryland strain 25-D and the 1990 Maryland strain 90-
12 [31], and a small amount Ssa3 was detected in both
N. risticii PA-1 in this study and in N. sennetsu
Miyayama [39]. There was no signal peptide predicted
for Ssa3 [38], and Ssa3 was not predicted to have a -bar-
rel structure. It was originally shown that ssas contain a
wide variety of mainly small repeats of 10-55 bp in size
[31]. Tandem repeats ranging in size from 63-156 bp are
present in ssal, ssa2, and ssa3 of N. risticii lllinois [38].
In particular, the N terminus of Ssa3 contains 2.2 copies
of a 52-aa (156 bp) tandem repeat in N. risticii [llinois (aa
53-196) [38]. Thirteen Ssa3 proteins and protein frag-
ments were aligned and compared (Figure 6a). Within
this N-terminal repeated region, Neorickettsia spp.

consisted of anywhere from zero to four repeated 52-aa
peptides arranged in tandem followed by a terminal 40-
aa peptide similar to the 52-aa repeats (for N. risticii Illi-
nois: 50% identical, E-value = 6 x 107, using protein-pro-
tein blastp). It appears that the number of 52-aa repeats
increases over time; six post-2000 strains (Table 1) have
four repeats. There is further variety in the form of point
mutations within the 52-aa repeats and terminal 40-aa
peptide. In addition, the terminal 40-aa peptide in SF
Oregon was truncated by 9 aa (31 aa in length, with
the downstream sequence aligning with the other Neor-
ickettsia sequences downstream of their terminal 40-aa
peptides). Of note, there are B-sheets predicted to
encompass most of the repeated region (aa 40-67; 76-
119; 128-167) and scattered within the C-terminal region
(aa 235-433).

Sequence variation in Ssa1l

Ssal sequences of N. risticii, other than that of N. risticii
Illinois have not been determined. Given the strongest
similarities between ssal of N. risticii Illinois and the
unknown ssas from N. risticii strains 25-D (isolated in
1984) and 90-12 (isolated in 1990) [38], two ssal fragments
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Table 4 PHF-positive sera from naturally-infected horses and negative sera

Horse ID? Clinical signs® Location Year IFA titer

1 (OH10-1) A, F, De, Deh, C Johnstown, OH 2010 > 1:10,240

2 (OH10-2) A, F, De, C L, Et, EUTH Grove City, OH 2010 > 1:10,240
3 A, F, De, Deh, L, Et, EUTH Richwood, OH 2010 > 1:10,240
4 A, De, F Galloway, OH 2010 > 1:10,240
5 A, De, Deh, F, C, L Dayton, OH 2010 > 1:10,240
6 A F, C L EUTH Loveland, OH 2010 > 1:10,240
7 U Indiana 2010 1:5120
8 A, Di, De, Deh, F, L Troy, OH 2008 1:1280
9 U Kentucky 2008 1:1280
10 u Indiana 2008 1:1280
11 A, F, Di, De, Deh Columbus, OH 2008 1:1280
12 A F, Di Cattaraugus, NY 2010 1:640
13 U Indiana 2008 1:640
14 A F C Oak Hill, OH 2008 1:80
15 A F Utica, OH 2008 1:80
N1 u New Jersey 2010 < 120
N2 U Ohio 2010 < 1:20
N3 U New Jersey 2010 < 1:20

?Sera 1 and 2 are from the same horses as buffy coats OH10-1 and OH10-2, respectively, as identified in Table 1.
PA, anorexia; F, fever; De, depression; Deh, dehydration; C, colic; L, laminitis; Et, endotoxemia; EUTH, euthanized; U, Unknown; Di, diarrhea.

were amplified, sequenced, and translated from PA-1 and
OHO07-1. PA-1 (aa 11-249) and OHO7-1 (aa 1-239) Ssal
fragments were aligned with corresponding regions from
N. risticii Illinois Ssal (aa 246-469) and the Ssas from 25-D
(aa 287-507) and 90-12 (aa 579-817). Ssal fragments from
PA-1 and OHO7-1, which are both post-2000 strains, clus-
tered with the 90-12 Ssa, rather than with the 1980s iso-
lates N. risticii Illinois Ssal and 25-D Ssa, suggesting a
chronological trend (Figure 6b).

Discussion

The genes p51, nsp2, nsp3, and ssa3 are uniquely evolved
in Neorickettsia spp. The gene p51 is a single copy gene
and demonstrates only loose associations with other pro-
teins of the family Anaplasmataceae [37,38]. The nsps
and ssas are both potential operons, consisting of three
genes tandemly arranged [38]. The nsps belong to
pfam01617, and similar to Ehrlichia chaffeensis omp-1
(p28) genes (also from pfam01617) [49], the proteins

1 E1 E2 E3 E4 E5 E6 E7 E8 E9
0.8 5P
»n —_ —_ —_— —_— —_— —_ —_— —_—— — —_
= A A A A A A A AA A AA AN A A
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Figure 2 P51 amino acid sequence variations. Amino acids different from N. risticii lllinois, including insertions and deletions are divided by the
number of sequences plotted for each amino acid position (# aa diffs). The horizontal axis displays P51 amino acid positions (aa position) including
the signal peptide and all detected amino acid insertions (515 aa total). SP, signal peptide. E, external loop; and TM, transmembrane domain are
based on the predicted secondary structure [39]. The number of sequences available at each amino acid position on P51 (# seqs) is shown below. )
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Figure 3 P51 amino acid sequence variations among Neorickettsia sequences. Dendrograms of P51 from (A) a 41-aa fragment (counting all
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encoded by nsp2 and nsp3 were strain variable. As seen
in the ssas, other members of the family Anaplasmata-
ceae have genes encoding proteins containing strain-vari-
able tandem repeats (involving amino acid variation and
changes in the numbers of tandem repeats), including
Trp120 (formerly gp120), Trp47 (formerly gp47), and
VLPT (variable-length PCR target) from E. chaffeensis
and Trp140 (formerly gp140), Trp36 (formerly gp36),
and gp19 from Ehrlichia canis [50-52]. Of note, the pro-
teins encoded by the ssas are not homologous to any pro-
teins of the family Anaplasmataceae by blastp. Among
p51, the nsps, and the ssas, there have been no signs of

intragenomic recombination events, which are seen in
the Anaplasma p44/msp2 expression locus [53,54].
Proteomics results performed on two strains of N. risticii
established that P51 is a dominant surface-expressed pro-
tein. The recognition of recombinant P51 by PHF horse
sera, even by 1:80 IFA titer sera suggests P51 is expressed
and highly recognized within the present day naturally-
infected horses. Despite P51 amino acid sequence varia-
tion among N. risticii strains, this strong universal recogni-
tion by horse immune sera suggests rP51 may serve as a
defined serodiagnostic antigen. Furthermore, the study
suggests that there are immunodominant conserved
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peptide sequences within P51 which might serve as even
more specific PHF diagnostic antigens.

Sequence comparison of these surface-exposed pro-
teins of N. risticii strains, with respect to the predicted
protein secondary structure, the majority of which are

clinical isolates, indicates there are hot spots within the
genes with greater strain divergence. These include
external loops 2 and 4 in P51, external loop 4 in Nsp2,
external loop 2 in Nsp3, and the repeated region of
Ssa3. P51 showed strong geographical association; and
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Nsp2, Nsp3, and Ssa3 showed temporal association.
Importantly, N. risticii Illinois (upon which vaccines for
PHF are produced) is distinct from most East/Midwest
US strains (P51) and most post-2000 strains (Nsp2,
Nsp3, and Ssa3), which may be a contributing factor in
PHF vaccine failure [24,55].

There are outlier strains which do not fit the geogra-
phical and temporal patterns. These include 081 [20,22],
the Kentucky strain OV [22], and the Kentucky strain
Herodia. Unique sequences in other N. risticii strains,
such as TN02-1 (P51, Nsp2, and Nps3), KY03-3 (Nsp2),
ILO1-1 (Nsp3), and OH10-1 (Ssa3), suggest that varia-
tion contrary to the popular geographical and temporal
influences may be more widespread. When additional
contemporary sequences and sequences from more var-
ied geographic regions become available, these analyses
are expected to improve.

Possible explanations for extensive DNA sequence var-
iation within Neorickettsia include the defective DNA
repair systems in both N. risticii and N. sennetsu [37,38].
This would result in higher mutation rates for Neorickett-
sia [56], which would agree with the temporal changes
and the production of outlier strains of N. risticii. P51
variation showed substantial geographical association,
suggesting these variations were selected under local
environmental pressures. It is possible that geographical
association of N. risticii sequence variation is due to N.
risticii strains being selected within essential reservoir
trematode populations. In addition, diverse N. risticii
strains may have emerged due to selective pressures
inflicted on the infected trematodes and/or on the trema-
todes’ hosts [4-9,57-59]. Humoral immunity would thus
not play any direct role in creating genetic diversity
within N. risticii populations. Since Neorickettsia spp. are
known (N. risticii and N. helminthoeca) and suspected to
be vertically transmitted within their trematode hosts
[8,13,60], mammalian infection is not expected to be
required for maintaining Neorickettsia in the natural
environment.

Regardless the cause, this genetic variation would result
in increased N. risticii survival as a species. N. risticii sur-
face protein genetic diversity revealed in the present study
will help in understanding variations in PHF virulence and
clinical signs. It may also be possible to use this new mole-
cular knowledge for vaccine development. It would, how-
ever necessitate taking into account that the pathogen is
an obligate intracellular pathogen, indicating that not only
humoral immune responses, but also cell-mediated immu-
nity would play an active role in preventing bacterial infec-
tion [61-63].

Genes encoding the two original Ssas, called P85 (90-12)
and P50 (25-D) are most related to ssal from N. risticii
Ilinois [24,31,38,55], but they also show similarities to
ssa2 and the non-coding region between ssal and ssa2
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using blastn. Although both are Maryland isolates, the
25-D strain was isolated six years earlier than the 90-12
strain [31], suggesting both temporal variation and the
potential development of chimeras of multiple Ssas and
non-coding regions in P50, P85, and post-2000 Ssal (due
to the similarities of PA-1 and OHO07-1 Ssal fragments to
P85). It is possible that the high variability of Ssal may
have prevented PA-1 Ssal from being identified by proteo-
mics. However, there is the obvious lack of large numbers
of peptides identified by proteomics for Ssas in N. risticii
Illinois using the isogenic Illinois strain sequence data and
in N. sennetsu using Miyayama isogenic strain data [39]. It
is likely that Ssas are not a dominant surface protein in
mammalian cells.

In conclusion, our data demonstrate the variety present
within major surface proteins of N. risticii, and they sug-
gest conservation among geographical regions and time
periods. In addition, P51 is implicated as the major sur-
face antigen of N. risticii. These data will be valuable in
developing better diagnostic methods and may help in
the development of more efficacious vaccines.

Additional material

Additional file 1: Supplemental Table 1. Primers utilized for PCR
amplification. Word document demonstrating primers utilized for PCR
amplification of p51, nsp2, nsp3, ssal, and ssa3.
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