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Abstract

This study assessed the presence of sialic acid a-2,3 and a-2,6 linked glycan receptors in seven avian species. The
respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant,
ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin
II'and Sambucus nigra agglutinin, which show affinity for a-2,3 and a-2,6 receptors, respectively. Additionally, the
pattern of virus attachment (PVA) was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a
human-origin seasonal HIN1 virus. There was a great variation of receptor distribution among the tissues and
avian species studied. Both a-2,3 and a-2,6 receptors were present in the respiratory and intestinal tracts of the
chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the
receptor was basically restricted to a-2,3 in both the respiratory and intestinal tracts and in mallards the a-2,6
receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general,
in agreement with the PVA. The differential expression and distribution of a-2,3 and a.-2,6 receptors among various
avian species might reflect a potentially decisive factor in the emergence of new viral strains.

Introduction

Wild aquatic birds are generally considered to be the
source of all influenza viruses found in mammal and avian
species, including humans, pigs, horses, minks, marine
mammals, cats, and a great number of domestic avian spe-
cies [1]. Phylogenetic studies indicate that all human influ-
enza viruses, including the predominant strains associated
with the seasonal flu (H1, H2, and H3 subtypes) originated
from an avian ancestor [2]. More recently, a swine-origin
influenza A HIN1 virus (pHIN1), which contains genes of
human, avian and swine influenza viruses, caused the first
pandemic of the 21°*" century [3].

The host restriction of influenza A viruses is in part
determined by specific sialic acid receptors on the surface
of susceptible cells. These receptors are composed of nine
carbon monosaccharides, usually found on the outermost
terminal position of glycan chains, linked to cell-surface
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glycoproteins and glycolipids [4]. The N-acetylneuraminic
acid (Neu5Ac), one of the most common sialic acids, is
usually bound to galactose (Gal) in an a-2,3 (Neu5ACo-
2,3Gal) or a-2,6 configuration (Neu5ACa-2,6Gal), and
their expression and distribution are cell specific [5]. The
affinity of influenza viruses for these receptors varies
according to the species from which they are isolated.
Influenza viruses of avian origin preferentially bind to
Neu5Aca-2,3Gal (a-2,3 receptors, avian-like receptors),
the form that predominates in the duck enteric tract
where these viruses replicate [6,7]; whereas human influ-
enza strains recognize Neu5ACa.-2,6Gal (ot-2,6 receptors,
human-like receptors) [8,9].

For many years, it was thought that the inter-species
barrier could only be crossed after adaptation of an avian
influenza virus in pigs, since pigs were shown to harbor
both a-2,3 and a-2,6 receptors [6,10]. Later on, it was
observed that the H5 and H7 avian influenza virus sub-
types could be directly transmitted from poultry to
humans, in spite of having a-2,3 receptor specificity
[11-13]. This observation encouraged investigators to
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study the role of a-2,3 and a.-2,6 receptors in the species
barrier, and led to the description of a.-2,3 receptors in
the human lower respiratory tract, which may partially
explain the localization and severity of H5N1-associated
pneumonia in humans [14,15].

The expression of influenza receptors in avian and
mammal species have been studied by means of lectin
histochemistry, based on the binding affinity of Maackia
amurensis agglutinin II (MAAII) for a-2,3 receptors
[16], and of the plant-derived lectin Sambucus nigra
agglutinin (SNA), which preferentially detects a-2,6
receptors [17]. The avian species that have been studied
include the following: the chicken (Gallus gallus domes-
ticus), common quail (Coturnix coturnix), Japanese quail
(Coturnix japonica), bobwhite quail (Colinus virginia-
nus), Chinese ring-necked pheasants (Phasianus colchi-
cus), turkey (Meleagris gallopavo), pearl guinea fowl,
Pekin duck (Anas platythynchos domestica), mallard
(Anas platyrhynchos), Tolousse goose (Anser anser
domesticus), black-headed gull (Larus ridibundus), mew
gull (Larus canus), herring gull (Larus argentatus),
domestic pigeon (Columba livia), common wood pigeon
(Columba palumbus), dunlin (Calidris alpina), and
common murre (Uria aalge) [7,18-26]. The presence of
both the a-2,3 and a-2,6 receptors has been reported in
some domestic avian species such as the chicken, bob-
white quail, turkey, Chinese ring neck pheasant, white
midget turkey, Pearl guinea fowl, and Pekin duck
[18,19,23,25,27]. However, the information available in
these studies is generally restricted to a few tissues in
the respiratory or intestinal tracts, and accompanied by
a concise description of the pattern expression of influ-
enza receptors.

The expression of influenza virus receptors can also be
evaluated with virus histochemistry to determine the pat-
tern of viral attachment (PVA) [9]. Virus histochemistry is
a binding assay based on the attachment of concentrated
fluorescein-labeled virus on host cells, and visualized by
routine immunohistochemical techniques. The PVA is a
valuable tool to determine the affinity of a specific virus to
certain species and host cells, which are critical factors for
an effective infection [15]. Several recent studies have eval-
uated the PVA of influenza viruses in avian species [28], as
well as in humans [15,29-31] and other mammal species
[29]. However, current knowledge of the PVA in avian
species is still very limited [28].

The combined use of both techniques, lectin histo-
chemistry and virus histochemistry, could be useful to
elucidate the role of domestic species in the transmission
of influenza viruses and help to understand the evolu-
tionary pressures exerted by different poultry species
over influenza viruses, discerning for instance, why these
viruses evolve faster in chickens and turkeys than in wild
birds [32]. Furthermore, understanding viral and host
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barriers that prevent transmission may be critical in
establishing rational control measures as well as predict-
ing and stratifying risk for individual strains of influenza
[33].

The present study extensively assessed the expression of
a-2,3 and a-2,6 receptors in the respiratory (nasal cavity,
trachea, and lung) and intestinal (duodenum, jejunum-
ileum, cecum, and colon) tracts of seven domestic avian
species. Furthermore, the PVA of an avian-origin H4N5
virus and a human-origin HIN1 influenza virus on
respiratory and intestinal tracts was also evaluated. The
species studied include the chicken, common quail, red-
legged partridge (Alectoris rufa), turkey, golden pheasant
(Chrysolophus pictus), ostrich (Struthio camelus), and mal-
lard. These domestic species were selected because they
are commonly held commercially for egg, meat, feather or
leather production, or for ornamental purposes. The influ-
ence of the a-2,3 and a-2,6 receptor-distribution and PVA
on the emergence and perpetuation of influenza viruses is
discussed herein.

Materials and methods

Animals and tissues

The seven domestic avian species included in this study
were the following: chicken, common quail, red-legged
partridge, turkey, golden pheasant, ostrich, and mallard.
Three individuals of each species were used. Samples of
the nasal cavity (including both middle and posterior tur-
binates), trachea, lung, duodenum, jejunum, ileum, cecum
and colon were obtained from archival formalin-fixed par-
affin-embedded tissues of the Veterinary Pathology Service
of the Universitat Autonoma de Barcelona (Barcelona,
Spain). Tissues free from any histopathological lesions
were selected for this study. Human, pig and mice tissue
samples were used as positive controls for the detection of
a-2,3 and a-2,6 receptors. Human lung samples, obtained
from an adult patient that died without previous pulmon-
ary disease, were kindly provided by Hospital Universitari
Vall d’Hebron (Barcelona, Spain) in accordance with pro-
tocols approved by the Ethics Committee on Clinic Inves-
tigations of the Hospital. Respiratory and intestinal tracts
of pigs and mice were obtained from animals that died
without previous respiratory or digestive diseases, sub-
mitted for necropsy at the Veterinary Pathology Service of
the Universitat Autonoma de Barcelona. This study was
carried out in strict accordance with the recommendations
of the Ethics Committee of Animal and Human Experi-
mentation of the Universitat Autonoma de Barcelona.

Lectin histochemistry

Lectin histochemistry was performed as previously
described [34] with minor modifications. Briefly, 3 um-
thick sections were deparaffinized and treated with 3%
H,0O, in methanol to eliminate endogenous peroxidase
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activity, washed with Tris-NaCl-Tween buffer (TNT) (0.1
M Tris HCI, 0.15 M NaCl, pH 7.5), and blocked with
TNB (TNT plus blocking reagent) (Perkin Elmer, US) for
30 min at room temperature (RT). Tissue sections were
then incubated with biotinylated SNA (10 pg/mL) and
MAAII (15 pg/mL) (Vector Laboratories Inc, CA, USA)
in TNB at 4 °C, overnight. After washing with TNT,
sections were incubated with streptavidin-horse radish
peroxidase (SA-HRP) 1:100 for 1 h, followed by incuba-
tion with Tyramide Signal Amplification (TSA™ Biotin
System, Perkin Helmer, USA) at 1:50 in dilution Buffer,
and again incubated with SA-HRP for 30 min at RT. The
reaction was developed with diaminobenzidine (Sigma-
Aldrich, MO, USA) at RT for 30 s followed by counter-
staining with Mayer’s haematoxylin. The expression of
the receptors was visible by light microscopy as brown
staining. To rule out the non-specific binding of lectins,
two sequential slides were used as negative controls. One
slide was pretreated with neuraminidase (NA), which
cleaves both a-2,3 and a-2,6 residues, as previously
described [34]; and the other was incubated with phos-
phate buffered saline instead of the lectins. After careful
examination of each slide, and in order to compare
receptor expression patterns among the tissues and spe-
cies included in this study, the relative intensity of recep-
tor expression was scored based on the percentage of
cells in a section showing positivity, and was graded as:
negative (-); low (+), when 1% or more, but less than 10%
of the cells were positive; moderate (++), when 10% or
more, but less than 50% of the cells were positive; strong
(+++), when 50% or more of the cells were positive.
Photomicrography of the lectin histochemistry was taken
using a Leica DM6000B microscope, Leica DFC480 digi-
tal camera, and Leica Application Suite software
program.

Virus histochemistry

The attachment of influenza virus to epithelial cells in
respiratory and digestive tracts was visualized by virus
histochemistry as previously described [29]. With the
exception of the chicken and mallard, where three indivi-
duals were included, one individual of each species was
evaluated using the virus histochemistry technique. The
viruses used were A/Mallard/Netherlands/13/08 (H4N5)
and the seasonal A/Netherlands/35/05 (H1IN1). Both
viruses were prepared as previously described [29].
Briefly, the viruses were inoculated in chicken embryo
chorioallantoic membrane (H4N5) or in Madin-Darby
canine kidney cells (H1N1), and harvested two days later.
Viruses were concentrated and purified by centrifugation
on sucrose gradient, inactivated by dialysis against 0.1%
formalin, and labeled with fluorescein isothiocyanate
(FITC). Tissue sections were incubated with 50-100
hemagglutinating units per 50 pL of FITC-labeled virus.
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Attachment of virus was detected with a peroxidase-
labeled anti-FITC antibody, and amplified with a tyra-
mide signal amplification system. Peroxidase was
revealed with 3-amino-9-ethyl-carbazole, which resulted
in a bright red precipitate. Attachment of influenza
viruses to tissues was visible by light microscopy as gran-
ular to diffuse red staining on the apical surface and in
the cytoplasm of epithelial cells. As for the lectin histo-
chemistry, the relative intensity of the viral attachment to
epithelial cells was scored based on the percentage of
cells in a section showing virus attachment, as follows:
negative (-); low (+), when 1% or more, but less than 10%
of the cells were positive; moderate (++), when 10% or
more, but less than 50% of the cells were positive; strong
(+++), when 50% or more of the cells were positive.
Photomicrography of the virus histochemistry was taken
using a Leica DM6000B microscope, Leica DFC480 digi-
tal camera, and Leica Application Suite software
program.

Results

Lectin histochemistry

The pattern of receptor expression in the control tissues
used in this study (human lung, pig and mice respiratory
and digestive tracts) was in agreement with previously
published literature. The NA pretreatment, used as a
control, removed all the binding sites for the SNA; how-
ever, very low levels of staining for MAAII remained
after the NA treatment in connective tissue of the lamina
propria in the respiratory and intestinal tracts of all the
species studied, and was considered as non-specific stain-
ing (data not shown).

Respiratory tract

There was a marked variation on the distribution and
expression of influenza receptors among the tissues and
avian species studied. The distribution of influenza
receptors in the respiratory tract is given in Table 1 and
the results from nasal cavity and trachea are illustrated
in Figures 1 and 2, respectively.

Chicken In the nasal cavity, strong o.-2,3 receptors were
observed on respiratory ciliated epithelial cells as well as
on olfactory epithelial cells, but were low on respiratory
non-ciliated epithelial cells. In contrast, positivity for o.-
2,6 receptors was moderate on respiratory ciliated
epithelial cells and low on olfactory epithelial cells.
Chicken trachea showed low levels of staining for both
receptors on ciliated epithelial cells. The chicken lung
manifested strong staining for both receptors in the
bronchial epithelial cells, whereas the parabronchial
epithelial cells were strongly positive for a.-2,3 receptors
only.

Common quail In common quails, low levels of a-2,3
receptors were observed in the nasal cavity (respiratory
epithelium and olfactory epithelial cells), trachea (ciliated
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Table 1 Distribution of Sia 0-2,3 Gal and Sia 0-2,6 Gal receptors® in the upper and lower respiratory tracts of seven

avian species.

Tissue, cell type

Species, receptor type®

Chicken Common Red-legged Turkey Golden Ostrich Mallard
Quail Partridge Pheasant
0-2,3 0-26 0-23 0-2,6 o-2,3 o-2,6 o023 026 023 0-26 0-2,3 0-26 0-2,3 0-2,6

Nasal Cavity
Respiratory Epithelium
Ciliated epithelial cells +++  ++ +e4 ++ ++ ++ ++ 4 4+ - + +
Non-ciliated epithelial cells — + - ++ + - + + + + - ++ -
Olfactory Epithelium
Olfactory epithelial cells +++  + + ++ ++ ++ ++ ++ ++ - - -
Bowman gland epithelium  +++ ++ ++ ++ + - + - - - ++ o+
Adjacent structures
Nasal gland epithelium + o+t + ++ nd nd ++
Salivary gland epithelium ++ + +++ ++ ++ ++ ++ +++ - ++
Trachea
Ciliated epithelial cells + 4+ - - - ++ + - 4t
Goblet cells - + + + + - - - - ++
Mucous gland epithelium ++ + + + + + + - -
Lung
Bronchial epithelial cells +H++ -+ +++ - - ++ +++  + + + - + +
Parabronchial epithelial cells +++ - + - - - - +++  + - + - + -
Air capillary cells - - + - - + - - - + + . - .

? The distribution of a-2,3 and a-2,6 influenza receptors was evaluated using lectin immunohistochemistry.

b negative; +: low; ++: moderate; +++: strong; nd: not determined.

epithelial cells) and lung (bronchial and parabronchial
epithelial cells), whereas strong expression of a-2,6
receptors was observed in nasal, tracheal and bronchial
epithelial cells. Expression of a.-2,6 receptors on respira-
tory non-ciliated epithelial cells and olfactory epithelium
was relatively moderate.

Red-legged partridge The partridge respiratory tract
showed moderate staining for o.-2,3 receptors on respira-
tory ciliated epithelial cells and the olfactory epithelium,
low staining on respiratory non-ciliated epithelial cells
and tracheal ciliated epithelial cells, and negative staining
in the lung. Likewise, expression of a-2,6 receptors was
moderate on olfactory epithelial cells, low on the respira-
tory epithelium, and negative on tracheal and pulmonary
epithelial cells.

Turkey The turkey nasal cavity expressed moderate
staining for both receptors on respiratory ciliated epithe-
lial cells and olfactory epithelial cells, while low levels of
staining for o.-2,6 receptors was observed on non-ciliated
epithelial cells. Tracheal ciliated epithelial cells showed
strong expression of a.-2,3 receptors and negative expres-
sion for a-2,6 receptors. Moderate positivity for a-2,3
receptors was observed on bronchial epithelial cells,
while strong positivity for a.-2,6 receptors was observed
in bronchial and parabronchial epithelial cells.

Golden pheasant Moderate a.-2,3 receptor expression
was observed on respiratory ciliated epithelial cells while
low levels of a.-2,3 receptor expression were observed on
respiratory non-ciliated epithelial cells, olfactory epithe-
lium and lung (bronchial and parabronchial epithelial
cells). Similarly, moderate positivity for o.-2,6 receptors
was observed on respiratory ciliated epithelial cells, olfac-
tory epithelial cells, and tracheal ciliated epithelial cells;
while low levels of staining were observed on respiratory
non-ciliated epithelial cells and bronchial epithelial cells.
Ostrich Low levels of a-2,3 receptor expression were
observed in the trachea (ciliated epithelial cells), lung
(bronchial and parabronchial epithelial cells), as well as
respiratory non-ciliated epithelial cells. Moderate expres-
sion of a.-2,3 receptors was noticed on respiratory ciliated
epithelial cells and olfactory epithelial cells. Interestingly,
o.-2,6 receptors were not expressed in any segment of the
ostrich respiratory tract. The receptor expression was not
determined on the ostrich nasal gland epithelium due to
the lack of this structure on the samples evaluated.
Mallard Moderate expression of a-2,3 receptors was
observed in respiratory non-ciliated epithelial cells and tra-
cheal ciliated epithelial cells; while low levels of expression
of a-2,3 receptors was noted on nasal respiratory ciliated
epithelial cells, and bronchial and parabronchial epithelial
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Figure 1 Influenza receptor distribution and pattern of viral attachment in the nasal cavity. Composite bright field microscope images
comparing the distribution of @-2,3 and a-2,6 receptors, demonstrated by means of MAAII and SNA lectin histochemistry, with the pattern of
viral attachment of the avian influenza A/Mallard/Netherlands/13/08 (H4N5) virus and the human influenza A/Netherlands/35/05 (H1N1) virus,
demonstrated by means of virus histochemistry, in the nasal cavity of the chicken (A1-A4), common quail (B1-B4), red-legged partridge (C1-C4),
turkey (D1-D4), golden pheasant (E1-E4), ostrich (F1-F4), and mallard (G1-G4).
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Trachea, receptor type/virus binding pattern
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comparing the distribution of @-2,3 and a-2,6 receptors, demonstrated by means of MAAII and SNA lectin histochemistry, with the pattern of
viral attachment of the avian influenza A/Mallard/Netherlands/13/08 (H4N5) virus and the human influenza A/Netherlands/35/05 (H1N1) virus,

demonstrated by means of virus histochemistry, in the trachea of chicken (A1-A4), common quail (B1-B4), red-legged partridge (C1-C4), turkey
(D1-D4), golden pheasant (E1-E4), ostrich (F1-F4), and mallard (G1-G4).
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cells. Moderate expression of a.-2,6 receptors was observed
in tracheal ciliated epithelial cells and low levels of a.-2,6
receptor expression were observed in respiratory ciliated
epithelial cells and bronchial epithelial cells.

Intestinal tract

The expression and distribution of influenza receptors
in the intestinal tract is described in detail in Table 2
and the results from the large intestine are illustrated in
Figure 3.

Chicken Moderate positivity for a-2,3 receptors was
observed on columnar epithelial cells of the small intes-
tine (duodenum and jejunum-ileum), and low levels of
staining were recorded on columnar epithelial cells from
the large intestine (cecum and colon). Expression of a-
2,6 receptors was low on columnar epithelial cells of the
jejunum-ileum and cecum.

Common quail Moderate expression of a.-2,3 receptors
was observed on columnar epithelial cells from the large
intestine, while low levels of expression of a-2,3 receptors
were observed in columnar epithelial cells from the small
intestine. Regarding the expression of a.-2,6 receptors, a
moderate staining was visualized in cecal columnar epithe-
lial cells, and low levels of staining were present in colum-
nar epithelial cells from the small intestine and colon.
Red-legged partridge Both receptors were expressed in
low levels in red-legged partridge intestinal tract. The
partridge intestinal tract showed expression of a-2,3
receptors along the columnar epithelial cell from the jeju-
num-ileum, cecum and colon, while o.-2,6 receptors were
only observed in cecal columnar epithelial cells.
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Turkey Both receptors were expressed in low levels in
turkey intestinal tract. Expression of a.-2,3 receptors was
noted on columnar epithelial cells from the small intes-
tine and colon, while expression of a-2,6 was restricted
to columnar epithelial cells from the large intestine.
Golden pheasant Moderate expression of a-2,3 recep-
tors was observed in columnar epithelial cells from the
small and large intestines, while expression of a-2,6
receptors was low on columnar epithelial cells from the
small and large intestines.

Ostrich The a-2,3 receptors were predominant on the
intestinal tract. The expression of a-2,3 receptors was
low on columnar epithelium cells from the small intes-
tine and cecum, while a-2,6 receptors were absent from
intestinal epithelial cells.

Mallard Strong expression of a-2,3 receptors was
observed throughout the columnar epithelial cells from
the small and large intestines. The a-2,6 receptors were
not expressed in the intestinal tract of mallards.

Virus histochemistry

The expression of a-2,3 and a.-2,6 receptors, as deter-
mined by lectin histochemistry, was compared with the
PVA of avian-origin H4N5 and human-origin HIN1
influenza viruses in the respiratory tract (Table 3) and
intestinal tract (Table 4) of the seven avian species used
in this study. In order to facilitate the comparison
between the lectin histochemistry and virus histochemis-
try, the lectin histochemistry results in these tables were
summarized; a media of the scoring of the epithelia lining

Table 2 Distribution of Sia 0-2,3 Gal and Sia 0-2,6 Gal receptors® in the intestinal tract of seven avian species.

Tissues, cell type

Species, receptor type'J

Chicken Common Quail Red-legged Partridge Turkey Golden Pheasant Ostrich Mallard

0-23 0-26 O-23 0-2,6 o-2,3 0-2,6 o-2,3 0-26 0-23 0-26 0-23 0-26 0-23 0-2,6
Duodenum
Columnar epithelial cells ++ + - - + - ++ + - +++ -
Goblet cells +++ ++ + - - - 4+ - - -
GALT lymphocytes - + - + + + + - + + _
Jejunum-lleum
Columnar epithelial cells ++  + + + + - + - ++ + + - -
Goblet cells +++ - ++ - - - - + ++ - - -
Cecum
Columnar epithelial cells  + + ++ ++ + + - + ++ + + - +++ -
Goblet cells - - - + - - - - + 4+ ++ - R B
GALT lymphocytes - ++ - - + - + - T - + R B
Colon
Columnar epithelial cells + - ++ + - + + ++ + - - +++ -
Goblet cells - - - + - + - - - ++ T+ - , ,
GALT lymphocytes - ++ - - - - + - + + - + - -

@ The distribution of a-2,3 and a-2,6 influenza receptors was done using lectin immunohistochemistry.

P - negative; +: low; ++: moderate; +++: strong.
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Large Intestine, receptor type/virus binding pattern
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Figure 3 Influenza receptor distribution and pattern of viral attachment in the large intestine. Composite bright field microscope images
comparing the distribution of @-2,3 and a-2,6 receptors, demonstrated by means of MAAIl and SNA lectin histochemistry, with the pattern of
viral attachment of the avian influenza A/Mallard/Netherlands/13/08 (H4N5) virus and the human influenza A/Netherlands/35/05 (H1N1) virus,
demonstrated by means of virus histochemistry, in the large intestine of the chicken (A1-A4), common quail (B1-B4), red-legged partridge (C1-
C4), turkey (D1-D4), golden pheasant (E1-E4), ostrich (F1-F4), and mallard (G1-G4).




Costa et al. Veterinary Research 2012, 43:28
http://www.veterinaryresearch.org/content/43/1/28

Page 9 of 13

Table 3 Influenza receptor distribution® and pattern of viral attachment® in the respiratory tract® of different avian

species.
Tissues, types of receptor/virus binding"I
Species Nasal Cavity® Trachea Lung
a-2,3 H4N5 a-2,6 H1N1 a-2,3 H4N5 o-2,6 H1N1 a-2,3 H4N5 o-2,6 H1N1

Chicken ++ ++ + ++ + + + o + r

Quail + + ++ ++ ++ ++ ++ + + ++9 + +
Partridge ++ ++ + + + ++ - - - + + -
Turkey ++ ++ ++ ++ + - + +++ +
Pheasant 4+ ++ + + o+ ++ + + + R
Ostrich ++ +++ - - + ++ - - + - -
Mallard + + + - + +++ ++ + + ++ 9 + -

@ The distribution of a-2,3 and a-2,6 influenza receptors was done using lectin immunohistochemistry.
® The pattern of viral attachment was performed using virus histochemistry and the A/Mallard/Netherlands/13/08 (H4N5) and A/Netherlands/35/05 (H1N1)

viruses.

€ Media of the results obtained in the epithelia lining (ciliated and non-ciliated epithelial cells and goblet cells).

4. negative; +: low; ++: moderate; +++: strong.

€ 'Nasal Cavity’ includes the following: nasal turbinates and infraorbital sinuses.
fVirus binding mainly in infraorbital sinuses.

9 Virus binding mainly in bronchi.

(ciliated and non-ciliated epithelial cells) and goblet cells
of the different tissues from the respiratory and intestinal
tracts was calculated and expressed as follows: nasal
cavity (nasal turbinates and infraorbital sinuses), trachea,
lung, small intestine, and large intestine. It is remarkable
that the HIN1 virus did not attach to the respiratory
tract of the ostrich, nor did the H4N5 virus on the intest-
inal tract of turkeys. The results obtained with the recep-
tor expression and the PVA were in general comparatively
consistent among the different tissues and avian species
studied (Tables 3 and 4, Figures 1, 2 and 3). With the

Table 4 Influenza receptor distribution® and pattern of
viral attachment® in the intestinal tract® of different
avian species.

Species Tissues, types of receptor/virus binding"I
Small Intestine Large Intestine

023 H4N5 0-2,6 HINT a-23 H4N5 0-2,6 HIN1
Chicken  +++  ++ + + + ++ + +
Quail ++ + + + + + ++
Partridge  + + + + + + + -
Turkey + - - + + -
Pheasant  ++ + + + ++
Ostrich ++ + - + ++ + - -
Mallard ++ + - + ++ + - -

? The distribution of a-2,3 and a-2,6 influenza receptors was evaluated using
lectin immunohistochemistry.

P The pattern of viral attachment was performed using virus histochemistry
and the A/Mallard/Netherlands/13/08 (H4N5) and A/Netherlands/35/05 (H1N1)
viruses.

€ Media of the results obtained in the epithelia lining (columnar epithelial
cells and goblet cells).

9 _: negative; +: low; ++: moderate; +++: strong.

exception of several cases, the avian-origin A/Mallard/
Netherlands/13/08 (H4NS5) virus bound to tissues where
o.-2,3 receptors were observed, and the human-origin A/
Netherlands/35/05 (H1N1) virus bound to tissues where
o.-2,6 receptors were observed. In the respiratory tract of
all the species evaluated, the attachment of A/Mallard/
Netherlands/13/08 (H4N5) was more evident than the
attachment of A/Netherlands/35/05 (H1N1), particularly
in the nasal cavity and trachea (Table 3 Figures 1 and 2).
However, this tendency was not observed for the intestinal
tract (Table 4 Figure 3).

Minor inconsistencies between lectin histochemistry and
PVA results were detected, and consisted in one grade of
scoring. In some cases, there was viral attachment despite
the absence of receptor expression, as observed in the par-
tridge lung for a.-2,3/H4N5 (Table 3) and in turkey, ostrich,
and mallard small intestine for a.-2,6/HIN1 (Table 4); in all
these cases, the tissue was negative for the presence of the
receptor but showed a PVA graded as low. Conversely, in
other cases there was no viral attachment despite the pre-
sence of receptor expression, as that occurring for a.-2,6/
HINI in the mallard nasal cavity, turkey trachea, and par-
tridge, pheasant and mallard lungs (Table 3); as well as tur-
key small and large intestines for a-2,3/H4N5, and
partridge large intestine for a.-2,6/HIN1 (Table 4). In these
cases, the tissue showed low expression of the receptor, but
was negative for the PVA.

Discussion

In this study, a lectin histochemistry technique was used
to extensively assess the expression of a-2,3 and a-2,6
receptors in the respiratory and intestinal tracts of seven
domestic avian species. The staining for these two types
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of receptors was not performed in a single assay and,
therefore, it is not possible to accurately determine
whether cells co-express both a-2,3 and a-2,6 receptors,
but to infer about the expression of these receptors in a
particular tissue or cell type. In the chicken, common
quail, red-legged partridge, turkey, and golden pheasant,
both a-2,3 and a-2,6 receptors were expressed in at least
one segment of the respiratory and intestinal tracts. The
a.-2,6 receptors were not observed in the respiratory tract
of the ostrich, nor in the intestinal tract of mallards. The
PVA of an avian-origin H4N5 and a human-origin HIN1
influenza virus was also evaluated on the same tissues
and compared with the lectin histochemistry distribution
pattern. There was a great variation among the tissues
and avian species studied (Tables 1 and 2), and, with a
few exceptions, the results obtained with the lectin histo-
chemistry were in agreement with the virus histochemis-
try (Tables 3 and 4).

Virus histochemistry has shown to be a useful assay to
study the pattern of virus attachment in different tissues,
and the PVA and the lectin histochemistry results were
comparatively consistent. When both techniques were
compared, the results obtained with the PVA and with
the lectin histochemistry were either equal or varied
only one grade (Tables 3 and 4). There were only two
cases where the lectin histochemistry was graded as
strong (+++) and the PVA was graded as low (+), and
only three cases where the lectin histochemistry was
graded as low (+) and the PVA was graded as strong (+
++) (Table 3).

The results obtained in the chicken were in agreement
with previous reports, in which a limited number of tis-
sues were evaluated [21,24,27]. However in the present
study we observed a low level of staining for the o-2,6
receptor on the epithelial cell in the jejunum-ileum and
cecum, whereas Liu et al. [20] did not detect a-2,6
receptors in the intestinal tract of chickens, and Kuchi-
pudi et al. [21] only detected this receptor in the large
intestine. These differences could be attributed to the
signal amplification methodology used in our study. On
the contrary, the presence of a-2,6 receptors and the
binding of the human-origin HIN1 virus to the intest-
inal tract of chickens was in accordance with the results
of an experimental study where a human-origin influ-
enza A virus was able to bind in vitro to chicken colon
cells [27].

In common quails, our results were in accordance
with previous reports in common quails [26] and Japa-
nese quails [23,25] in which both a-2,3 and a.-2,6 recep-
tors were observed in the respiratory and intestinal
tracts. Another study with bobwhite quail, however, did
not detect an a-2,6 receptor in the intestinal tract [19].
This difference in receptor expression could be related
to interspecies differences. Both viruses used for the
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PVA were able to bind to the respiratory and intestinal
tracts of quails, particularly the H4N5 virus in trachea.

In red-legged partridges, low levels of expression of
both a-2,3 and a.-2,6 receptors were observed in respira-
tory and intestinal tracts. Assuming this pattern of
receptor distribution is seen in other partridge species,
it could explain the susceptibility of chukar partridges
(Alectoris chukar) to experimental infection with both
avian-origin and swine-origin influenza viruses [35].

In turkeys, both a-2,3 and a-2,6 receptors were
detected on epithelial cells along the intestinal tract and
the entire respiratory tract, in agreement with recent
studies [18,19,36]. Regarding the PVA, attachment of
the human-origin HIN1 virus was observed in the
respiratory (nasal cavity and lung) and intestinal tracts,
while the attachment of the avian-origin H4N5 virus
was restricted to the respiratory tract. This was consis-
tent with the fact that turkeys are also susceptible to
swine-origin HIN1 and H3N2 influenza viruses [37-41],
to reassortant viruses with human, swine, and avian
influenza genes (H1IN2) [42,43], as well as to the pH1N1
virus, as demonstrated in August 2009 in two turkey
flocks naturally infected in Chile [44], indicating the
potential of avian species that express both a-2,3 and o-
2,6 receptors, to be susceptible to mammal-origin influ-
enza viruses and potentially offer an adequate environ-
ment for the emergence of reassortant viruses. Turkeys
have also been successfully infected with the pH1IN1
virus by experimental inoculation via the intrauterine
route, with subsequent oropharyngeal and cloacal virus
shedding, but were not infected when the intranasal
route was used [45]. This observation shows that other
factors rather than the tissue distribution of receptors
and the affinity of virus binding may determine the out-
come of an exposure to certain influenza A viruses.

In golden pheasants, the observed expression of both
a-2,3 and o-2,6 receptors in the respiratory and intest-
inal tracts was in accordance with previous reports
[19,26]. This may explain why pheasants can be infected
with avian-origin influenza viruses that have specificity
to a.-2,6 receptors, as observed for some HIN2 influenza
virus isolates [46]. In pheasants, the PVA of the avian-
origin H4N5 was observed throughout the respiratory
and intestinal tract, while the PVA of the human-origin
HINI1 virus was restricted to the trachea and intestinal
tract. In addition, the fact that ring-necked pheasants
could not be experimentally infected with human and
swine influenza viruses [35] indicates that, as mentioned
above, besides the hemagglutinin receptor binding site,
other factors may be involved in the restriction of inter-
species transmission [47].

In ostriches, the influenza receptor expression was
almost exclusively restricted to o-2,3 receptors on
epithelial cells throughout the respiratory and intestinal
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tracts, as with the PVA of the avian-origin H4N5 virus.
The expression of a-2,6 receptors was low on GALT
lymphocytes, and the PVA of the human-origin HIN1
virus was restricted to a few lining epithelial cells of the
small intestine. In fact, there are no reports of ostrich
infection with mammal-origin influenza viruses.

In mallards, both a-2,3 and a-2,6 receptors were
observed in the respiratory tract, as previously reported
[19,22,26]. Regarding the intestinal tract, a.-2,3 receptors
were moderately expressed in mallards, while a-2,6
receptors were absent. A recent study, however,
reported a very minimal expression of a.-2,6 receptors in
the large intestine of the Pekin duck [19]. The absence
of abundant a-2,6 receptors in the mallard intestinal
tract, associated with the fact that the PVA of the
human-origin HINT1 virus was low and restricted to the
trachea and small intestine, correlate with the fact that
ducks are resistant to the infection with human influ-
enza A viruses under natural and experimental condi-
tions [5,48].

When interpreting the distribution of influenza recep-
tors based on lectin histochemistry or virus histochemistry
it is important to take several factors into consideration.
For instance, studies of influenza virus infections in ex vivo
cultures indicated that there are alternative receptors that
cannot be identified with the lectins used in the present
study [49]. Furthermore, ongoing viral mutations and
adaptation may change host receptor affinity over time,
further limiting lectin staining [50]. Additionally, besides
the distribution of receptors, other host and viral factors
intervene in the process of viral replication and adaptation
of any influenza viruses in a new species, such as host
immune response, and viral glycoproteins and internal
proteins [47,51].

Using glycan micro arrays it has been shown that not all
a-2,3 or a-2,6 receptors bind to influenza hemagglutinin
(HA) proteins equally well; one glycan terminating in a-
2,3 might not bind HA while another may bind exceed-
ingly well [52]. Therefore, determining the influenza virus-
binding profile in tissues of different animal species is a
condition fundamental to better understanding the role of
these receptors [19]. However, care must be taken when
interpreting and extrapolating PVA results, since the PVA
may vary between and within influenza A strains.

In summary, this study demonstrates that although
both a-2,3 and a-2,6 receptors are expressed in domes-
tic birds, there is marked variation among species. This
information helps to understand the effect of host pres-
sure on virus evolution and indicates that “mixing ves-
sels” is not only restricted to pigs, since other species
could also have an important role in the transmission
and adaptation of influenza viruses of avian-origin to
the mammal host. Hence these poultry species could
pose a greater threat to humans, since avian viruses
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with affinity for a-2,6 receptors may be selected, ampli-
fied and transmitted. This could explain why some avian
HONZ2 strains acquired affinity for a-2,6 receptors in
quail after continual circulation in the field [46,53,54].
In this respect, it is important to determine the role of
concomitantly co-expressed a-2,3 and a.-2,6 receptors in
the emergence of new viral strains, especially those with
pandemic potential.
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