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Abstract

Enterotoxigenic Escherichia coli that cause neonatal and post-weaning diarrhea in piglets express F4 fimbriae to
mediate attachment towards host receptors. Recently we described how llama single domain antibodies (VHHs)
fused to IgA, produced in Arabidopsis thaliana seeds and fed to piglets resulted in a progressive decline in shedding of
F4 positive ETEC bacteria. Here we present the structures of these inhibiting VHHs in complex with the major adhesive
subunit FaeG. A conserved surface, distant from the lactose binding pocket, is targeted by these VHHs, highlighting the
possibility of targeting epitopes on single-domain adhesins that are non-involved in receptor binding.
Introduction, methods and results
F4 fimbriae are expressed on the cell surface of entero-
toxigenic E. coli (ETEC) to mediate attachment towards
carbohydrate receptors localized on the enterocytes of
piglets [1]. ETEC strains are responsible for significant
death and morbidity in neonatal and post-weaned piglets
by causing severe, watery diarrhea [2], resulting world-
wide in severe economic losses in pig industry. Clinical
symptoms are generated by the action of enterotoxins:
the heat-labile enterotoxin (LT) and/or two unrelated
heat-stable enterotoxins (STa and STb) [3]. F4 fimbriae
are assembled by the conserved chaperone-usher pathway
[4] and composed out of a major adhesive subunit FaeG,
resulting in the exposure of many hundreds consecutive
binding surfaces along the flexible F4 fimbrial structure. In
the final quaternary structure fimbrial subunits comple-
ment the incomplete immunoglobulin-like fold of one an-
other by donating an N-terminal donor strand in trans to
the preceding subunit [4]. Three naturally occurring sero-
logical variants of F4 fimbriae (F4ab, F4ac and F4ad) exist
that differ in the primary sequence of FaeG, with each
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variant featuring a related but yet different binding and
hemagglutination profile [5,6]. The FaeG structure was earl-
ier determined and shows a conserved immunoglobulin-
like fold, typical for fimbrial subunits, on which a
subdomain comprising two short β-strands and two α-
helices is grafted [7]. Most of the variability is localized on
and around this additional subdomain and recently we
elucidated the co-complex structure between FaeGad and
lactose (Moonens et al., under review), demonstrating the
glycan ligand is interacting in a binding site located on the
additional subdomain. A commercial vaccine containing
F4 fimbriae is currently available on the market and pro-
vides maternal passive immunity against E. coli induced
neonatal diarrhea [8]. To this date no commercial vaccine
or prevention strategy against post-weaning diarrhea
caused by F4 fimbriated ETEC is yet available. Within
our research group anti-ETEC antibodies were generated
by fusing four different variable domains of llama heavy
chain-only antibodies (V1-4), raised against FaeGntd/dsc, ac

and panned against all three FaeGntd/dsc variants (first
variant ac, than ad and finally ab), to the Fc domain of
a porcine immunoglobulin IgA. The resulting four
VHH-IgA constructs were subsequently expressed in
Arabidopsis thaliana seeds and fed to piglets [9]. The
oral feed-based passive immunization strategy protected
piglets as demonstrated by the progressive decline in shed-
ding of F4 positive ETEC bacteria, the significantly lower
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immune responses of the piglets to F4 fimbriae which
suggest a reduced exposure to the ETEC pathogen, and
a significantly higher body weight in comparison with
control piglets [9]. It was demonstrated as well that
seed extracts containing VHH-IgA antibodies could inhibit
the attachment of F4 positive ETEC strains to porcine gut
villous enterocytes in vitro [9].
Using X-ray crystallography we investigated the mech-

anism of action of the isolated VHHs that inhibit the F4
fimbriae-mediated binding. Stable self-complementing
FaeG constructs of all three variants (FaeGab, FaeGac and
FaeGad), in which the N-terminal donor strand was
swapped to the C-terminus via a short tetrapeptide
DNKQ linker, were expressed and purified as described
earlier [10]. Complexes between the different purified
VHHs [11] and the self-complementing variants of FaeG
were produced by incubating them together with excess
VHH and separating the complex by size exclusion chro-
matography. Crystals were obtained for the complexes of
Table 1 Crystal parameters and data processing statistics

Complex FaeGac-V1

Wavelength 0.98

Beamline Soleil - Proxima 1

Space group P 3 2 1

a, b, c (Å ) 145.5, 145.5, 38.9

α, β, γ (°) 90, 90, 120

Resolution (Å) 47.62 – 1.55 (1.63 – 1.55)

Rmeas (%)
a,b 4.9 (56.9)

No. of unique reflectionsb 68481 (9923)

Average I/σI 24.8 (4.2)

CC (1/2) 100 (92.2)

Multiplicityb 11.2 (10.9)

Completeness (%)b 99.9 (99.0)

Wilson B-factor 24.9

Rwork/Rfree(%)
c, d 16.9/19.3

Average B-factor (Å2) 20.2

R.m.s. deviations

Bond lengths (Å) 0.026

Bond angles (°) 2.715

No. Atoms (except H)

Protein 2778

Water 305

Residues in allowed regions 100

(%) of Ramachandran plot

PDB entry 4WEM
aRmeas = Σh (nh/nh-1) Σl |Ihl - < Ih > |/ Σh Σl < Ih>, where nh = the number of observa
and < Ih > = the average intensity for reflection h.
bStatistics for outer resolution shell are given in parenthesis.
cRwork = Σhkl ||Fobs | - |Fcalc|| / Σhkl |Fobs|.
dRfree is defined as above but calculated for 5% of randomly chosen reflections that
FaeGac-V1, FaeGac-V2 and FaeGad-V3 in respectively
condition A10 of the Clear Strategy Screen I HTS-96
(Molecular Dimensions), C4 of the JBScreen Basic HTS
(Jena Bioscience) and E12 of the Morpheus Screen HT-96
(Molecular Dimensions) using the sitting drop damp
diffusion method. Diffraction data were indexed using
XDS [12] (Table 1) and further prepared and scaled
using respectively Pointless and Scala [13]. The phase
problem was solved with the molecular replacement
method by Phaser [13] with the coordinates of the self-
complementing FaeGad (PDB identifier 3HLR) and a llama
single domain antibody as search models. The resulting
models of the co-complexes were further improved by
manually building in the molecular graphics program
COOT [14] and refined using Refmac5.5 [13] (Table 1).
All three inhibitory VHHs interact with conserved epi-
topes on the FaeG surface (Figure 1A). V1 and V2 interact
with nearly similar epitopes constituted of residues of
the conserved immunoglobulin-like core domain and
FaeGac-V2 FaeGad-V3

0.98 0.98

Soleil - Proxima 1 Diamond - IO3

P 3 2 1 P 2 21 21

145.8, 145.8, 37.9 79.8, 95.2, 113

90, 90, 120 90, 90, 90

47.74 - 1.89 (2.0 - 1.89) 29.54 – 2.61 (2.67 – 2.61)

12.3 (198.4) 10.5 (117)

36784 (5212) 26553 (1559)

14.3 (1.4) 16.1 (1.1)

99.9 (79.6) 99.8 (49)

20.2 (19.3) 10.6 (3.8)

99.7 (97.7) 98.3 (79.6)

35.6 63.4

18.9/22.7 20.5/24.5

28.3 35.7

0.021 0.012

2.150 1.607

2752 5293

105 29

98.6 98.7

4WEN 4WEU

tions for reflection h,Ihl = the intensity for observation l of reflection h,

were excluded from the refinement.



Figure 1 Crystal structures of inhibitory VHHs in complex with the major adhesive subunit FaeG. (A) From left to right, molecular surface
representation of the structure of FaeGad in complex with lactose (stick representation), co-complex structure of V1 with FaeGac, co-complex structure
of V2 with FaeGac and finally the co-complex structure between V3 and FaeGad. The orientation of FaeG in each panel is identical, the additional
binding domain grafted onto the FaeG immunoglobulin-like core is colored red and the VHH in the last three panels is colored in blue. Variation between
the different FaeG variants is colored on the molecular surface of FaeGad in green. The lactose binding site on the surface of FaeGad is indicated by a yellow
circle for clarity. (B) Comparison of the binding conformation of V1 (yellow) and V2 (blue). The different CDR regions of the VHHs are indicated and colored
in orange (V1) and purple (V2). In V2 the CDR2 is shifted upwards and located at a further distance from the FaeG surface, whereas the conformation of
the CDR3 is near identically traced. (C) Close-up on the interactions formed in the complex between V3 and FaeGad. (D-G) Interactions formed between
V1 and FaeGac (D,E) and V2 and FaeGac (F,G) in different orientations. In each panel FaeG is colored gray and the additional variable subdomain in cyan.
VHHs are depicted in yellow and water molecules are represented as red spheres. Interacting residues of the VHH and FaeG adhesin are
labeled respectively blue and black and shown as stick model with nitrogen atoms colored blue and oxygen atoms in red. Hydrogen bonds are depicted
as orange dashed lines.
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conserved residues of the additional variable subdomains
(Figure 1A). V3, in contrast, is only interacting with a
patch of amino acids located on the Ig-like conserved core
domain (Figure 1A). The heavy chain-only antibodies V3
and V4 only differ in one amino acid substitution (Lys 100
Arg), and analysis of the crystal structure of V3 in com-
plex with FaeGac revealed Lys100 is not involved in any
stabilizing interactions. When comparing the structures of
the FaeG-VHH complexes with the recently determined
FaeGad-lactose structure (Moonens et al., under review) it
is obvious that the binding of the different VHHs onto
FaeGad does not target the lactose binding site and hence
the F4ad fimbriae are not obstructed in their carbohydrate
binding capability (Figure 1A). All VHHs are targeting
conserved patches on FaeG, and since the specificity of
the different FaeG variants has been localized on the
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additional binding domain [15] we can conclude that
the inhibitory mechanism of the VHHs is not governed
by directly interfering with the carbohydrate binding site.
The strength of the interaction between the different

VHHs and FaeG variants was determined using surface
plasmon resonance (Figure 2). The surface of a CM5
sensor chip (GE Health Care) was activated, the different
VHHs immobilized on flow channel 2 via primary amine
groups and finally residual unreacted active ester groups
were deactivated, all according to manufacturer’s protocol.
As a control, flow channel 1 was as well activated and
deactivated. The different FaeG variants were flowed over
the chip surface in a two-fold dilution series in HBS buffer
(10 mM HEPES, 150 mM NaCl, 1 mM EDTA, 0.005%
Tween20, pH 7.4) at a flow rate of 10 μL/min at 25°C.
The obtained sensorgrams of the subtracted (Fc2 - Fc1)
signals were fitted using a Langmuir binding isotherm
with a 1:1 stoichiometry, from which the kinetic rate
Figure 2 Interaction between inhibitory VHHs and the different FaeG
interaction between inhibitory VHHs and FaeG (here depicted is the interac
injecting varying concentrations of FaeG (50 μM to 1.5 nM) over covalently im
model. Fitted curves are shown in black, while the original data is represe
dissociation (kd) rate constants, and association (KA)/dissociation (KD) constant
constants ka and kd were obtained (BIAeval software;
Biacore AB). Affinities varied from low μM for V1 and
V3, to high nM for V2 (Figure 2B). These experimentally
determined affinities differ significantly from the low nM
dissociation constants by which VHHs typically recognize
their target antigens [16,17]. This discrepancy may arise
because of the VHH selection procedure. The earlier
described anti-FaeG VHHs were selected consecutively
against all three FaeG variants and instead of selecting
binders that demonstrated the highest affinity towards
only one FaeG variant, most likely VHHs with moderate
affinity against all three variants were obtained during the
selection procedure. Even amongst the conserved surfaces
of the different FaeG variants small structural perturba-
tions are observed. A panning procedure selecting binders
against all FaeG variants would select VHHs interacting
with an averaged FaeG structure, but not necessarily with
high affinity.
variants. (A) Typical set of sensorgrams obtained when assaying the
tion between V1 and FaeG variant ac). Sensorgrams were obtained by
mobilized VHHs. The curves were fitted using a 1:1 Langmuir binding
nted by the colored curves. (B) Overview on the association (ka) and
s of the interaction between the different VHHs and FaeG variants.
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The detailed interactions between the inhibitory VHHs
and the major adhesive subunit FaeG of F4 fimbriae are
shown in Figure 1B-G. The interaction between V3 and
FaeGad is mediated mainly by direct hydrogen bonds be-
tween the amino acid stretches Ser52-Thr54, Tyr59 and
Ser101-Val104 of V3, that correspond with respectively
the complementarity determining regions CDR2 and CDR3,
with the amino acid residues Tyr88, Lys114 and Glu117-
Gly118 from FaeGad (Figure 1C). Since V1 and V2 are
targeting overlapping epitopes, we superimposed the
two structures of V1-FaeGac and V2-FaeGac. The two
VHHs are directed in an identical orientation to interact
with the FaeG adhesin (Figure 1A). Only the conformation
of the CDR2 is significantly altered and is more distant
from the FaeG molecular surface in the V2-FaeGac co-
complex structure (Figure 1B). In the V1-FaeGac struc-
ture a large amount of water molecules, eight in total,
are observed in the interaction interface formed by the
CDR2 region and those are all involved in inter mo-
lecular hydrogen bond formation between V1 and FaeGac

(Figure 1D). In addition, only four direct hydrogen
bonds are formed between the FaeGac and CDR2 of V1
(Figure 1D). In contrast, the V2-FaeGac co-complex struc-
ture in the same interface exhibits only one water molecule
and three direct hydrogen bond interactions (Figure 1F).
Figure 3 VHH inhibition of the adherence of F4 fimbriated E. coli to p
adherence to piglet enterocytes of strains expressing F4ab (A), F4ac (B) and
added to 4 × 108 F4+ cells and incubated during one hour with an average
magnification of 600× and the number of bacterial cells adhering to 250 μ
and plotted as a percentage of wild type binding.
As there is no sequence conservation between the CDR2s
of V1 (SEGGILN) and V2 (TNTGVTE) this difference
in binding mode is not so surprising. The VHH-FaeG
interaction surface on the other side is bordered by the
CDR3 region that is nearly conserved amongst V1
(AASHWGTLLIKGIEH) and V2 (AATDWGTLLIKGIDH).
Again more water molecules are observed in the inter-
action interface between V1-FaeGac compared to V2-FaeGac

(5 versus 3 water molecules); however more direct in-
teractions (6 direct hydrogen bonds) are formed in both
complexes (Figures 1E and G). Unexpectedly although
in the V1-FaeGac complex many more direct and indir-
ect interactions are formed the affinity between V1 and
FaeGac is 70 times lower compared to the affinity of V2
for FaeGac (Figure 2B). The inclusion of more water mole-
cules in the V1-FaeGac complex binding interface might
have an unfavorable effect on the interaction, thereby
reducing affinity.

Discussion
Crosslinking of bacteria by antibodies, like for example
in Vibrio cholera [18] and Streptococcus mutans that causes
dental carries [19], has been shown to be important for
mediating protection. In contrast the neutralizing activity
of polyclonal IgM in the attachment of influenza virus to
iglet enterocytes in vitro. Quantitative analysis of bacterial
F4ad (C) fimbriae. A two-fold dilution series of monomeric VHHs was
of 50 villi. Villi were examined by phase-contrast microscopy at a
m villi length (5 repeated reads for each test sample) were counted
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target cells is due to steric hindrance [20]. When the four
VHHs were covalently coated on magnetic beads, specific
agglutination with the three variants of F4+ bacteria was
observed [9]. In a hemagglutination based assay purified
monovalent VHH were unable to inhibit the interaction of
guinea red blood cells and F4 fimbriated bacteria (results
not shown). However, in an in vitro adherence assay the
VHHs were able to prevent the attachment of F4 fimbriated
bacteria to piglet enterocytes (Figure 3). The inhibition of
adherence by VHHs was fully reversible by the addition
of monomeric FaeG, demonstrating the specificity of
the VHHs. Concentrations of VHH were identical in both
experiments and these results indicate the VHHs are able
to abrogate binding towards enterocyte based receptors
but cannot prevent the cross-linking of red blood cells by
F4 fimbriated bacteria. With crystallographic evidence
we demonstrated the different VHHs contact conserved
patches on the FaeG surface that are non-involved in
carbohydrate binding. We conclude the mechanism of
inhibition is mostly attributed to steric hindrance of the
interaction between F4 fimbriae and enterocyte based
receptors and to a lesser extent cross linking of F4 ex-
pressing bacterial cells.
VHHs possess a range of advantages compared to

more commonly employed prophylactic treatments. They
recognize their target antigen often with high affinity,
whereas organic compounds often require several in-
tensive rounds of structure-based chemical optimization
to attain a reasonable binding affinity. However in this
study the measured affinity of anti-F4 VHHs was relatively
weak, probably due to the VHH panning procedure that
selected out reasonable binders against all three FaeG
variants. The binding site interface contains many water
molecules, a peculiar binding mode that potentially could
facilitate recognition and interaction with all three FaeG
variants but at the cost of affinity. Since the receptor bind-
ing subdomain is highly variable, during the selection
rounds VHHs interacting at a conserved surface will be
selected since they recognize all three variants. However
more often anti-adhesives target the carbohydrate binding
site to efficiently prevent the interaction between the bac-
terial cell and host receptors [21]. In future this under-
standing will help to further enhance the prophylaxis
treatment against F4 fimbriated ETEC by selecting specific
VHHs with increased affinity and inhibitory capacity by
selecting them against the carbohydrate binding site and
against solely one FaeG variant at a time. Recently we
could completely inhibit the in vitro attachment of F18
fimbriae positive E. coli to piglet enterocytes by raising
VHHs against the carbohydrate binding site of the F18
fimbrial adhesin FedF [22]. Krüger et al. demonstrated
single-chain Fv (scFv) antibody fragment expressing lacto-
bacilli could markedly reduce the Streptococcus mutans
bacteria counts and caries scores in a rat model [23].
Likewise, expression of VHHs on lactobacilli can provide
an alternative approach for in vivo passive immunity
against F4 fimbriated ETEC. Nevertheless, although the
selected VHHs (V1, V2, V3 and V4) against the three F4
variants do not exhibit a high affinity and target mainly
the conserved immunoglobulin-like core domain of the
FaeG subunit variants, they are protecting weaned piglets
against infection by F4 positive ETEC strains regardless of
the F4 variant that is expressed by the ETEC strain.
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