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Yersinia ruckeri, the causative agent of
enteric redmouth disease in fish
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Abstract

Enteric redmouth disease (ERM) is a serious septicemic bacterial disease of salmonid fish species. It is caused by
Yersinia ruckeri, a Gram-negative rod-shaped enterobacterium. It has a wide host range, broad geographical
distribution, and causes significant economic losses in the fish aquaculture industry. The disease gets its name from
the subcutaneous hemorrhages, it can cause at the corners of the mouth and in gums and tongue. Other clinical
signs include exophthalmia, darkening of the skin, splenomegaly and inflammation of the lower intestine with
accumulation of thick yellow fluid. The bacterium enters the fish via the secondary gill lamellae and from there it
spreads to the blood and internal organs. Y. ruckeri can be detected by conventional biochemical, serological and
molecular methods. Its genome is 3.7 Mb with 3406–3530 coding sequences. Several important virulence factors of
Y. ruckeri have been discovered, including haemolyin YhlA and metalloprotease Yrp1. Both non-specific and specific
immune responses of fish during the course of Y. ruckeri infection have been well characterized. Several methods of
vaccination have been developed for controlling both biotype 1 and biotype 2 Y. ruckeri strains in fish. This review
summarizes the current state of knowledge regarding enteric redmouth disease and Y. ruckeri: diagnosis, genome,
virulence factors, interaction with the host immune responses, and the development of vaccines against this
pathogen.
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1. Introduction
Fish constitute a major source of protein, fatty acids, vi-
tamins, minerals and essential micronutrients for an
expanding segment of the world population. Conse-
quently, aquaculture is the fastest growing food produc-
tion sector and accounts for approximately 50% of the
fish consumed worldwide [1]. Disease outbreaks have
become a major constraint to the expansion of aquacul-
ture and have a significant impact on the economic de-
velopment of many countries. Enteric redmouth disease
(ERM, yersiniosis) is one of the most important diseases
of salmonids and leads to significant economic losses
[2]. The disease is caused by Yersinia ruckeri, a Gram-
negative rod-shaped enterobacterium, which was first
isolated from rainbow trout (Oncorhynchus mykiss) in
the Hagerman Valley of Idaho, USA [3] and is currently
found throughout North and South America, Europe,
Australia, South Africa, the Middle East and China [4,5].
Although infections have been reported in other fish
species, rainbow trout are especially susceptible to ERM
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[2-4]. Rainbow trout are fast growing and robust under
farming conditions, and thus are the most widely farmed
salmonid fish [1]. Herein, we review the latest scientific
developments on Y. ruckeri, including the present distri-
bution and diagnosis of ERM, the route of entry of Y.
ruckeri into the fish, its genome, virulence factors, inter-
actions with the host and immune responses, and
methods to control yersiniosis.

2. Identification and classification
Yersinia is a genus of Gram-negative, rod-shaped, facul-
tative anaerobes within the family Enterobacteriaceae.
Yersinia comprises several pathogenic species, which
cause diseases in humans and other animals, including
fish. Yersinia ruckeri is the causative agent of enteric
redmouth disease in various species of salmonids world-
wide. It was described from rainbow trout in the Hagerman
Valley of Idaho, USA in the 1950s [3]. The Y. ruckeri bacil-
lus is approximately 0.75 μm in diameter and 1–3 μm in
length. Y. ruckeri has a 3.7Mb genome, with a ~47% G +C
ratio [6,7], the same as other Yersinia species [7,8]. High-
throughput DNA sequencing of Yersinia species has con-
firmed that Y. ruckeri shares the same core set of genes
with the other members of the genus [9].
Different strains of Y. ruckeri have been reported and

categorized on the basis of serotypes, biotypes and
outer-membrane protein types. In 1993, the typing
scheme was updated and species were further subdivided
into four serotypes with different subgroups: Serotype
O1 is subdivided into two subgroups O1a (serovar I) and
O1b (serovar III) and serotype O2 (serovar II) into three
subgroups O2a, O2b and O2c. The remaining serotypes
are designated as serotype O3 (serovar V) and serotype
O4 (serovar VI) [10]. The vast majority of epizootics in
salmonids is caused by motile serotype O1a [10].
Strains of Y. ruckeri have also been subdivided into

two biotypes. Strains of biotype 1 are positive for motil-
ity and lipase secretion, whereas strains of biotype 2 are
negative for both tests [2,4]. However, the ability to secrete
lipase appears to have little relevance to the virulence of Y.
ruckeri during the natural infection [11]. Y. ruckeri is char-
acterized biochemically as glucose-fermentative, catalase-
positive, nitrate-reductive, oxidase-negative, with the ability
to secrete b-galactosidase, lysine and ornithine decarboxy-
lases but neither hydrogen sulfide nor indole [2,4].
The genetic structure and variations within Y. ruckeri

have been investigated using molecular tools including
multilocus enzyme electrophoresis, pulsed-field gel elec-
trophoresis (PFGE), fatty acid methyl ester profiles, ribo-
types and interspersed repetitive sequences-PCR. These
have shown that O1a strains of Y. ruckeri have high
levels of genetic homogeneity [12,13]. Bastardo et al.
[14] investigated the diversity and evolutionary relation-
ships among a geographically and temporally diverse
collection of Y. ruckeri strains using a multilocus se-
quence typing scheme. These authors suggested the ex-
istence of two major clonal complexes (CC1 and CC2)
within the Y. ruckeri population structure. They support
the ‘epidemic’ model of clonal expansion, in which
populations of well-adapted clones explode to be widely
distributed. Genetic and antigenic differences have been
found between biotype 1 and biotype 2 strains, using
16S rRNA sequence analysis, genotyping (including
ERIC-PCR and (GTG)5-PCR), and Western blot analysis
[15,16]. Furthermore, Welch [17] developed a novel
PCR-based assay to detect mutant alleles in strains of Y.
ruckeri using fliR gene primers, restriction enzyme di-
gestion and sequencing of the resulting fragments. This
assay identified four mutant alleles in biotype 2 strains
of Y. ruckeri that are presently circulating in Europe and
the United States, and which can cause outbreaks in
vaccinated fish.

3. Clinical signs and pathology of the disease
ERM can affect fish from all age classes but it is most
acute in young fish (fry and fingerlings). The disease ap-
pears as a more chronic condition in older/larger fish.
Disease outbreaks start with low level mortalities that
are sustained over time, resulting in high cumulative
stock losses [2,4]. Changes in fish behavior may be ob-
served, including swimming near the surface, lethargic
movements and loss of appetite. Other signs of disease
include exophthalmia and darkening of the skin, and
subcutaneous hemorrhages in and around the mouth
and throat, which give the disease its common name.
Petechial hemorrhages may occur on the surfaces of the
liver, pancreas, pyloric caeca, swim bladder and in the
lateral muscles. The spleen is often enlarged and can be
almost black in color (Figure 1), and the lower intestine
can become reddened and filled with an opaque, yellow-
ish fluid [2,4].
Histopathological examination shows general septicae-

mia with inflammation in most organs, and particularly
kidney, spleen, liver, heart, gills and in areas with petech-
ial haemorrhage. Pathological changes in the gills, in-
cluding hyperemia, oedema and desquamation of the
epithelial cells in the secondary lamellae have been de-
scribed [2,4,18]. Focal areas of necrosis can be present in
the spleen (Figure 2A), kidney (Figure 2B) and liver. In
the kidney, degenerated renal tubules, glomerular neph-
ritis and a marked increase in melano-macrophages may
be observed [2,4,18].

4. Distribution of Y. ruckeri
Since the first report of Y. ruckeri infection in rainbow
trout in the USA [3], the pathogen has been isolated
from multiple other fish species worldwide, including
Canada, Europe, South America, the Middle East, China,



Figure 1 Rainbow trout showing clinical signs of enteric redmouth disease. A: darkening of the skin, enlarged abdominal valley (black arrow),
and hemorrhages in the dorsal fin (white arrow). B: hemorrhages in and around the mouth (arrows). C: enlarged and black spleen (white arrow),
and reddened intestine (black arrow).
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India and Australia [4,5,19]. Additionally, Y. ruckeri has
been isolated from animals other than fish, including
muskrat (Ondatra zibethicus), kestrel (Falco spp.), sea
gulls (Laridae), turtles (Cheloniidae) and humans
[4,20,21]. These numerous reports demonstrate that Y.
ruckeri has a wide host range and geographical distri-
bution, and can cause both epizootics and zoonosis.

5. Transmission and epidemiology
Y. ruckeri infections can be transmitted by direct contact
between infected and non-infected fish. A carrier state
for Y. ruckeri was demonstrated, where infectious fish
can survive 2 months after both experimental [4] and
natural infections [4,22]. Busch and Lingg [23] verified
that up to 25% of a rainbow trout population could carry
Y. ruckeri in the lower intestine. The bacteria can then
be released when the carrier fish become stressed. For
Figure 2 Histological sections of spleen and kidney organs of rainbow
the spleen. B: degeneration of interstitial tissue and a marked increase in m
with haematoxylin and eosin (H&E).
example, it was observed that carriers transmitted Y.
ruckeri to clinically healthy fish when the temperature
was raised to 25 °C, but no transmission occurred from
unstressed carrier fish [24]. Shedding of the bacterium
in the feces is also likely to play an important role in
transmission, and Y. ruckeri can survive at least 4 months
outside the host [23]. The bacterial cells use either pili
or flagella to move along surfaces to link with other bac-
teria and form or enlarge microcolonies [25,26]. The
over-expression of flagellar proteins is a phenotypic
characteristic of bacteria associated with high adhesive-
ness and is essential to initiate development of biofilms.
It is now well recognized that the formation of biofilms
is an important feature of the survival of bacteria on sur-
faces and in sediments in aquatic environments [26,27].
Coquet et al. [27] isolated a Y. ruckeri strain that was
able to form biofilms on the solid supports frequently
trout infected with Y. ruckeri. A: multifocal necrosis can be seen in
elano-macrophages can be seen in the kidney. Sections were stained
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found in fish farm tanks. These biofilms are reported to
be a source of recurrent infection in rainbow trout facil-
ities [4,27]. The spread of Y. ruckeri has also been linked
to putative vectors, which include aquatic invertebrates
and birds [20]. While vertical transmission from mother
to progeny has not been well studied, Y. ruckeri has been
recovered from disinfected non-fertilized eggs of Chinook
salmon (Oncorhynchus tshawytscha), whose offspring expe-
rienced low mortalities from fertilization to 12 weeks on
feed [28]. Furthermore, the recent discovery of Y. ruckeri
DNA in unfertilized eggs and ovarian fluid of Chinook
salmon suggests that the pathogen could be transmitted
vertically. However, this study was unable to verify the
occurrence of bacterial cells within the chorion of the
egg [28].

6. Route of entry and spread
Histological examination of rainbow trout experimen-
tally infected with Y. ruckeri indicated that gills are an
important portal of entry for Y. ruckeri. Thereafter, Y.
ruckeri spreads to the other organs [18]. This spread was
recently visualized in organs of rainbow trout using op-
tical projection tomography and immunohistochemistry
[29]. The authors suggested that Y. ruckeri initially in-
fects the secondary gill lamellae, then spreads to the
blood system via the gill pavement cells, as rapidly as
1 min post infection (mpi). It could be detected in the
lumen of the intestine at 30 mpi, in the kidney at 3 days
post infection (dpi), and in the liver, spleen, brain and
heart at 7 dpi. Y. ruckeri was no longer detectable in the
liver, spleen, brain and heart at 21 dpi [29].

7. Genome
Annotated whole genome sequences of two strains of Y.
ruckeri are currently available: the motile CSF007-82 strain,
isolated from diseased rainbow trout and the motile O1b
37551 strain, isolated from vaccinated Atlantic salmon
(Salmo salar) (GenBank accession numbers PRJEB6967
and JPFO00000000, respectively) [7,30]. The genome of
CSF007-82 is 3 799 036 bp and contains 3530 coding se-
quences (CDS), 80 tRNA and 7 ribosomal operons, while
that of O1b 37551 is 3 775 486 bp and contains 3,406 CDS,
56 tRNA and 4 rRNA genes [7,30]. The availability of these
whole genomes is contributing to better understanding of
pathogenesis and virulence factors, facilitating identification
of mutations and construction of new targets for vaccines.
However, whole genome sequences of non-motile Y. ruckeri
strains from different geographical locations are still needed
to gain insight into the differences between motile and
non-motile strains.

8. Diagnosis
Multiple diagnostic assays have been developed for Y. ruck-
eri, including culturing, serological tests and molecular
biological techniques [4]. Y. ruckeri has been isolated using
Tryptic soy agar, Columbia blood agar and MacConkey
agar [2,4,31,32]. While Y. ruckeri can grow at a wide range
of temperatures, its thermal optimum is 20–28 °C [2,4]. Y.
ruckeri can be detected using ELISA, agglutination and im-
munofluorescence antibodies [33]. Molecular detection
techniques include restriction fragment length polymorph-
ism [34], loop-mediated isothermal amplification (LAMP)
[35] and polymerase chain reaction (PCR) [32,36,37]. PCR-
based amplification of the 16S rRNA gene can detect Y.
ruckeri in tissues of infected fish [32,36,37]. A LAMP assay
was optimized by Saleh et al. [35] and amplifies the yruI/
yruR gene, which encodes the Y. ruckeri quorum sensing
system. This ERM-LAMP assay is sensitive, rapid and the
amplification products can be detected by visual inspection
or gel electrophoresis (Figure 3).
The PCR method described by Gibello et al. [32] has

the advantage of being able to detect low levels of Y.
ruckeri, and thus provide the possibility to detect asymp-
tomatic carriers; essential to avoid transmission and
spread of ERM. PCR detection of Y. ruckeri in the blood
of rainbow trout was described by Altinok et al. [37].
The use of blood samples is a non-lethal sampling
method and permits repetitive sampling of individual
fish. Other nonlethal methods include culture of feces
and biopsy of head kidney by dorsocaudal aspiration of
the kidney tissue [38]. Improvements in specificity of
both conventional and quantitative PCR (qPCR) assay
have been attained using other candidate genes [39-41].
Bastardo et al. [42] recently described a qPCR method
based on the recombinant protein A (recA) gene. Gold
nanoparticle-based assays are an emerging technology,
which may become a powerful tool for rapid, direct and
sensitive detection of unamplified Y. ruckeri nucleic
acids in clinical samples. In nanoparticle-based assays,
DNA or RNA hybridizes with pathogen-specific probes
that are attached to the surface of the gold nanoparticles.
Hybridization occurs at a determined temperature and
time, and results in aggregation of the nanoparticles and
a concomitant red to blue color change [43].

9. Virulence factors
Several virulence mechanisms of Y. ruckeri have been
identified, and found to differ with the geographical ori-
gin of the isolate. Several extra-cellular products (ECP)
have been shown to reproduce the clinical signs associ-
ated with the hemorrhagic form of the disease when
injected into their host [10]. Multiple molecules are
known to contribute to the virulence of these ECP, for
example: the iron-regulated Serratia-like haemolysin
YhlA, which has cytolytic and haemolytic activity [44],
an azocasein protease [45], and the 47 kDa metallopro-
tease Yrp1, which has a wide range of targets and is par-
ticularly efficacious at degrading fibronectin, actin and



Figure 3 Detection methods for Yersinia ruckeri using loop-mediated isothermal amplification method. A: Agarose gel showing ERM-
LAMP products of Y. ruckeri; Lane mar: 100 bp DNA ladder, lane Y. ruc: amplified Y. ruckeri LAMP product, lane Y. ruc dig: Hph I digested Y. ruckeri
LAMP products of 87 and 108 bp, and lane veco: negative control. B: Visual detection of ERM LAMP products using SYBR Green I stain 1: 1:
Negative control reaction using Rox- labelled probe, there is neither pellet nor red fluorescence, 2: positive control reaction using Rox- labelled
probe, the pellet emitted red fluorescence; 3: positive sample by using FDR, emitted strong green fluorescence when exposed to UV light; 4:
negative sample by using FDR, did not emit strong green fluorescence under UV light; 5: positive sample with green color using SYBR green I
stain; 6: negative sample with orange color using SYBR green I stain (Image from Saleh et al. [35] with permission).
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myosin [46,47]. Recently, yrpA and yrpB have been dem-
onstrated to be induced in the gut of rainbow trout [48].
In addition, genes involved in the catecholate sidero-
phore ruckerbactin iron acquisition system were shown
to be over-expressed by the bacterium during the infec-
tion process in fish. Inactivation of the corresponding
gene led to a hundred-fold increase in the LD50 of the
bacterium [49]. Heat sensitive factor (HSF) produced by
the alkylsulphatase enzyme YraS has been proposed as a
virulence factor [50], and a differential culture medium,
using Coomassie Brilliant Blue has been developed to
identify strains that carry this factor [51]. However, re-
cent findings have contradicted these results and sug-
gested that HSF might not be required for Y. ruckeri
virulence [52]. Similarly, the cdsAB operon was initially
identified through in vitro expression technology [49]
and has been shown to be required for uptake of L-
cysteine by the bacterium [53]. However, despite L-
cysteine being present in fish serum, mutations in the
cdsAB operon failed to impact the growth of Y. ruckeri,
raising questions about the necessity of the cdsAB op-
eron [54].
Finally, as is often the case in microbial pathogens, the

expression of these virulence factors appears tightly reg-
ulated and linked with both the availability of iron [44]
and the concentration of auto-inducing molecules
[41,55]. BarA-UvrY is a regulator identified in Y. ruckeri
[55] and has homologs in other enterobacteria. BarA-
UvrY is involved in resistance to oxidative killing, and
the invasion of host cells. However, on the contrary to
observations in other enterobacteria, mutations in BarA-
UvrY did not impact the growth of Y. ruckeri under
iron-limited conditions [56]. More research is still
needed to identify novel virulence genes and to under-
stand the full pathogenic mechanisms of Y. ruckeri dur-
ing the infection process in the fish.

10. Host immune response
Non-specific and specific immune responses of fish
against Y. ruckeri strains have been studied extensively.
For example, both O-antigen and formalin-inactivated Y.
ruckeri cells induced an immune response in rainbow
trout [57,58], producing peak levels of antibody in the
spleen at 14 days post exposure (dpe) and overall max-
imum titer at 28 dpe [57]. Similarly, intra-peritoneal
booster doses of Y. ruckeri bacterin induced a significant
immune response in rainbow trout at 146 days post in-
jection [58]. Phagocytic cells, such as neutrophils and
macrophages, are an important part of the fish host im-
mune system, and an inflammatory response to Y. ruck-
eri has been observed in the body cavity of rainbow
trout [59]. Gene expression levels of CXCd, cytokine,
chemokine, interleukin, cell receptor, immunoglobulin,
SCOS and CISH genes have been measured in rainbow
trout in response to Y. ruckeri biotype 1 strains [60-64]
and Y. ruckeri biotype 2 strains using quantitative real-
time PCR [65,66]. Recent discoveries suggest production
of specific antibodies against Y. ruckeri may play a role
in protection against disease [63]. Serum amyloid A,
which belongs to a highly conserved group of apolipopro-
teins, is considered to be an important innate immune
molecule in rainbow trout during the course of Y. ruckeri
infection [67]. All these studies contribute to our under-
standing of how the innate and adaptive immune systems
in rainbow trout respond to both primary infection (first
infection) and re-infection (secondary infection). It is
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worthy of note that all of these studies were based on
mRNA expression, which may not always accurately re-
flect protein expression and biochemical changes [68].
Mechanisms of biochemical changes in the organs of fish
infected with strains of Y. ruckeri biotypes 1 and 2 at the
proteomics level still need to be investigated, both to
understand the proteomic background for observed prote-
omic changes, and to elucidate the mechanism of action
of the proteins whose expression differs between the
biotypes.

11. Control/treatment
11.1 Antibiotherapy
As is often the case with fish bacterial pathogens, post-
infection treatment relies mostly on the use of antibi-
otics. Unfortunately, only a limited spectrum of com-
pounds is routinely used [69]: amoxicillin; oxolonic acid;
oxytetracycline; sulphadiazine in combination with tri-
methroprim and, more recently, florfenicol [70]. This
narrow range of options may facilitate the emergence of
antibiotic resistance [71]. Screening of Y. ruckeri isolates
has shown that only 1 out of 50 was resistant to florfeni-
col [70]. Similarly, a more recent review suggested that
most European isolates are still widely responsive to
antibiotherapy [72]. While a β-lactamase gene has been
discovered on the chromosome of Y. ruckeri [73], there
is evidence that this gene is not likely to be expressed at
high levels [74]. In vitro testing has, however, shown that
Y. ruckeri readily develops resistance against oxolinic
acid, oxytetracycline and potentiated sulphonamide [75].
Finally, and more anecdotally, Y. ruckeri is both a natural
producer of and naturally resistant to the antibiotic
holomycin [76].

11.2 Probiotics
Concern about the development of antibiotic resistance
has spurred research into alternative methods for control-
ling bacteria, in particular, beneficial probiotic bacteria
and yeast [77]. Some success has been demonstrated for
the use of probiotics to fight Y. ruckeri: oral administration
of Bacillus subtilis and Bacillus licheniformis protects rain-
bow trout against subsequent infections [78]. The authors
hypothesized that this protection was due to either anti-
microbial secretions by the bacterium or to its immuno-
stimulating effect. This later hypothesis was supported by
data that showed that injection of cell wall components of
probiotic strains of B. subtilis and outer membrane com-
ponents including LPS of Aeromonas sobria, were also
protective [79].
Dietary supplementation with Bacillus sp., and Aero-

monas sobria, was confirmed as protective by Brunt
et al. [80]: it reduced mortalities from 80% in the control
to 0% (Bacillus sp. treatment) and 6% (A. sobria treat-
ment). Similarly, Enterobacter cloacae fed alongside
Bacillus mojavensis was shown to reduce mortalities
from Y. ruckeri challenge from 65to 0.8% [81].
Feed supplementation with Carnobacterium maltaro-

maticum B26 and Carnobacterium divergens isolated
from the normal intestinal microbiota of rainbow trout
were found to be protective against further Y. ruckeri in-
fections [82]. Interestingly, studies by Robertson et al.
[83] confirmed the protective action of Carnobacterium
sp. but found no antagonistic activity in vivo, suggesting
that, as seems to be the case for B. subtilis, protection is
achieved by stimulation of host defense rather than dir-
ect anti-microbial effect.
In addition, Lactobacillus lactis was shown to be an-

tagonistic to Y. ruckeri and, as with Lactobacillus fer-
mentum, significantly reduces adhesion of the pathogen
to fish mucus [84]. Comparable results were reported by
Sica et al. [85] who screened 12 lactic acid bacteria and
found that 60% of them displayed competitive exclusion
against Y. ruckeri.
Recently, it was reported that feeding fish with a

plant-based diet modified the composition of their gut
microflora, and affected their immune response to Y.
ruckeri [86], suggesting a prebiotic effect. This however
did not correlate to a significant difference in mortalities
during that trial.
Jaafar et al. [87] investigated the effect of two supple-

ments: organic acids and a combination of β-glucan
alongside mannan-oligosaccharides, nucleotides, lactic
acid bacteria, and vitamins C and E. The supplements
were tested separately and in conjunction, but were
found not to have a significant effect on survival of fish
exposed to Y. ruckeri.

11.3 Vaccination
The significant economic losses in salmonid fish aqua-
culture can be controlled to some extent by use of vacci-
nations. ERM was one of the first fish diseases for which
an effective commercial vaccine was developed [2,88].
The vaccine utilizes monovalent, inactivated whole cell
suspensions of Y. ruckeri serotype O1 biotype 1, which
can be administered to fish by several routes, e.g.
immersion, injection and oral. It provides good levels of
protection against Y. ruckeri biotype 1 strains [89–93],
as summarized in Table 1. New vaccines have been de-
veloped that are based on the Y. ruckeri Yrp1 protease,
aroA gene, extracellular product and lipopolysaccharide
and these provide good protection against Y. ruckeri bio-
type 1 strains [94-96]. However, Y. ruckeri biotype 2
strains are harder to combat and have been responsible
for disease outbreaks in fish that had been vaccinated
against biotype 1 strains; thus monovalent vaccines fail
to induce protection against biotype 2 infection [15,31].
A bivalent vaccine was developed using formalin inacti-
vated biotypes 1 and biotype 2 Y. ruckeri strains, and



Table 1 Experimental vaccine trials using a variety of antigen-preparation methods and their protection in fish following
experimental infection

Antigens Routes Fish species Challenge strains RPS (%) References

Formalin inactivated high pH
Y. ruckeri O1, strain Y-11

Immersion Rainbow trout Y. ruckeri O1, strain Y-12 83–96 [89]

Yrp1 protease toxoid of Y. ruckeri,
strain 150RI4

i.p. Rainbow trout Y. ruckeri, strain 150 79 [46]

Live attenuated Y. ruckeri O1,
strain 21102

i.p. Rainbow trout Y. ruckeri O1, strain 21102 90 [94]

Formalin inactivated Y. ruckeri O1,
biotype 1

Bath Rainbow trout Y. ruckeri O1, strain 392/2003 75–76.9 [61]

Extracellular product of Y. ruckeri Immersion Rainbow trout Y. ruckeri 74–81.4 [95]

Formalin inactivated Y. ruckeri O1b
biotype 1 (Yersinivac-B)

Immersion Atlantic salmon Y. ruckeri O1b, strain TCFB 2282 37 [91]

Trypsinated Yersinivac-B Immersion Atlantic salmon Y. ruckeri O1b, strain TCFB 2282 55.6 [91]

Formalin inactivated Y. ruckeri
serotype O1, biotype 1 × biotype 2 (EX5)

Immersion Rainbow trout Y. ruckeri O1, strains EX5, 58669,
G1S1, DenA, BAS2A

87–100 [16]

Formalin inactivated Y. ruckeri
serotype O1, biotype 1 × biotype 2 (EX5)

Immersion and i.p. Rainbow trout Y. ruckeri O1, biotype 2, strain
100415-1/4

100 [97]

Formalin inactivated Y. ruckeri biotype 1,
strain Hagerman

Immersion Rainbow trout Y. ruckeri O1, biotype 2, strain
100415-1/4

29.5 [64]

Recombinant flagellin protein of
Y. ruckeri biotype 1 BA19

i.p. Rainbow trout Y. ruckeri biotype 1 YR1 and
biotype 2 R1

68–72 [99]

Formalin inactivated Y. ruckeri biotype 1,
strain KC291153

Immersion with
montanide adjuvant

Rainbow trout Y. ruckeri biotype 1, strain KC291153 93.8–100 [82]

Lipopolysaccharide of Y. ruckeri i.p. Rainbow trout Y. ruckeri 77.4–85.1 [94]

Formalin inactivated Y. ruckeri biotype 1,
strain Hagerman

Oral and anal Rainbow trout Y. ruckeri O1, biotype 1, strain 392 100 [93]

i.pc intraperitoneal injection, RPS relative percentage survival.
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provides good protection against the biotype 2 strains
[16,97]. cDNA microarray analyses of gill tissues from
unvaccinated and vaccinated Atlantic salmon (Salmo
salar) challenged with Y. ruckeri O1b biotype 1, have led
to detection of genes and biosignatures which may be
useful as predictive indicators of vaccine success. These
targets include: non-protective/pathological response
genes (cathelicidin, C-type lection and collagenase),
vaccine-induced protective genes (immunoglobulin
heavy chain, selenoprotein, 60S ribosomal protein L37
and unknown) and transcriptional biosignature of pre-
dominantly immune-relevant genes including hepcidin,
immunoglobulin mu heavy chain, mylelin and lympho-
cyte protein. Detection of these bioindicators demon-
strates that there is a range of potential targets for
future vaccine development [98].

12. Conclusions
Y. ruckeri causes significant economic losses, particularly
in salmonid aquaculture. Two whole genome sequences
of motile strains of Y. ruckeri have been annotated and
can now be used for comparative genomic analysis of Y.
ruckeri strains, investigation of gene-level pathogenicity,
development of potential drug targets and vaccines.
Quantitative proteomic analysis of multiple geographic
isolates of biotypes 1 and 2 Y. ruckeri strains are not yet
completed, and are required to create a proteomic map
and understand proteomic changes and differences be-
tween the biotypes and strains. Some potential viru-
lence factors of Y. ruckeri have been identified but
more research on the bacterium’s virulence mecha-
nisms is needed to understand the full pathogenicity of
Y. ruckeri during the course of infection. Investigations
have revealed aspects of the fish immune response to
Y. ruckeri infections, however there is still an urgent
need to improve our understanding of the biochemical
changes that occur in host tissues and organs during
infection. Biotype 2 strains of Y. ruckeri have been re-
sponsible for outbreaks in rainbow trout that had been
vaccinated against biotype 1, thereby confirming the
failure of monovalent vaccines to protect the fish
against infection. Formalin inactivated bivalent vaccines
can significantly reduce mortalities due to infections
with biotype 2 strains but the development of more ef-
ficient vaccines against both biotypes of Y. ruckeri is
still needed.
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