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Abstract 

In order to gain insight into the role of the transcription regulatory sequences (TRSs) in the regulation of gene expres-
sion and replication of porcine reproductive and respiratory syndrome virus (PRRSV), the enhanced green fluorescent 
protein (EGFP) gene, under the control of the different structural gene TRSs, was inserted between the N gene and 
3′-UTR of the PRRSV genome and EGFP expression was analyzed for each TRS. TRSs of all the studied structural genes 
of PRRSV positively modulated EGFP expression at different levels. Among the TRSs analyzed, those of GP2, GP5, M, 
and N genes highly enhanced EGFP expression without altering replication of PRRSV. These data indicated that struc-
tural gene TRSs could be an extremely useful tool for foreign gene expression using PRRSV as a vector.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
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Introduction, methods, and results
Porcine reproductive and respiratory syndrome virus 
(PRRSV) is the causative agent of porcine reproductive 
and respiratory syndrome (PRRS), which leads to a highly 
contagious respiratory disease in nursery pigs and repro-
ductive failure in sows [1]. PRRS was first reported in 
1987 in North America and has become pandemic within 
a few years. PRRS is still one of the most economically 
important diseases for the swine industry worldwide [2, 
3]. PRRSV is a member of the genus Arterivius of the 
family Arteriviridae within the order Nidovirales. This 
enveloped virus bears a single-stranded, positive-sense 
RNA genome containing at least seven genes, encoding 
the replicase (ORF 1a and ORF 1b) and the structural 

proteins E, GP2 or GP2a, GP3, GP4, 5a, GP5, M, and N 
in the order 5′-ORF1-E-GP2-GP3-GP4-5a-GP5-M-N-3′ 
[4–6]. The structural proteins are expressed by a nested 
series of subgenomic (sg) RNAs, which are produced 
during viral transcription. The structure of the arterivirus 
and coronavirus sg mRNAs derives from the discontinu-
ous step of minus-strand RNA synthesis, which is guided 
by conserved AU-rich transcription-regulating sequences 
(TRS) [7–9]. There are two key elements of TRSs that are 
present both at the 3′ end of the leader sequence (leader 
TRS) and at the 5′ end of each gene in the 3′-proximal 
region of the genome (body TRSs). The body TRS motifs 
are found preceding almost all structural genes, while a 
leader TRS is present at the 5′ end of the genome. Minus-
strand RNA synthesis is guided by base-pairing between 
the genomic leader TRS and the copy of the body TRS 
present in the 3′ end of the nascent minus strand. Next, 
the nascent strands are extended with the complement of 
the genomic leader sequence, generating a nested set of 
minus-strand templates that can be directly copied into 
the sg mRNAs [10, 11]. Leader TRS is highly conserved 
among Arteriviridae. For example, in equine arteritis 
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virus (EAV) the TRS contains the conserved hexanucleo-
tide sequence UCAACU [12], highly related with those 
found in lactate dehydrogenase-elevating virus (LDV) 
(UAUAACC) [13] and in simian hemorrhagic fever virus 
(SHFV) (UUAACC) [14]. In case of PRRSV, the leader 
TRS is also highly conserved and appears to be UUAACC 
regardless of the PRRSV genotype (type 1 or type 2, also 
called European and North American genotypes, respec-
tively) [15, 16]. In contrast, different body TRSs have 
been shown to be diverse: [U/A/G][U/A/G][A/C][A/G]
[C/U]C among North American genotype viruses, and 
U[A/U/C][A/G][A/C]CC among European genotype 
viruses. Furthermore, the number of body TRSs and sites 
upstream of the start codon of each ORF vary in length 
and sequence [16–18]. Others and we have previously 
shown that the infectious clone of PRRSV can be engi-
neered as an expression vector, in which a foreign gene 
could be expressed under the control of a body TRS as 
a separate transcription unit. These findings have con-
firmed the potential use of PRRSV as a vaccine vector 
against swine pathogens [19–23].

The body TRS, including the conserved hexanucleotide 
motif and poorly conserved flanking sequences, form 
secondary structures essential for the sgRNA forma-
tion and play an important role in the regulation of viral 
transcription and translation [8, 24]. It was shown that a 
recombinant PRRSV vector with green fluorescent pro-
tein (GFP) gene driven by the body TRS2 and with an 
additional synthetic TRS6 controlling the ORFs 2a and 
2b was stably able to express the foreign GFP gene even 
after 37 serial passages [19]. In addition, several studies 
have indicated that the presence of overlapping genes in 
EAV and PRRSV genomes represents a major challenge 
for the mutational analysis of the N- and C-termini of the 
structural proteins and also make it difficult to insert het-
erologous genes into the viral genome [25, 26]. Similarly, 
the presence of overlapping genes in the PRRSV genome 
is a serious obstacle to determining the role of other body 
TRSs in PRRSV gene expression. Based on this informa-
tion, we hypothesized that different PRRSV body TRSs 
would lead to differential expression of a foreign gene 
(for TRS sequences information, please see Additional 
file 1). By using a reverse genetics system, we have evalu-
ated the individual role of body TRSs (of type 2 genotype) 
of each of the six PRRSV structural genes in expres-
sion of a foreign gene. We rescued a series of recombi-
nant PRRSVs expressing enhanced GFP (EGFP) driven 
by the six different body TRSs that corresponds to each 
PRRSV structural gene (Figure  1). Each transcriptional 
unit, including the individual body TRS and EGFP gene, 
was inserted between the N protein and 3′-UTR in a full-
length cDNA infectious clone of HP-PRRSV/SD16 strain 

(Figure 1A). This position has proven to express foreign 
genes stably without affecting PRRSV replication [19–
23]. The six recombinant HP-PRRSVs were recovered as 
previously described [20] and the EGFP expression was 
analyzed in virus-infected Marc-145 cells using fluores-
cent microscopy (Figure 1B). Different patterns of EGFP 
expression were observed. The TRSs of GP2, GP5, M, and 
N genes exhibited a relatively greater ability to control 
EGFP expression compared with the TRSs of GP3 and 
GP4 (Figure 1B). In order to investigate whether the res-
cue procedure or exogenous gene insertion affected the 
replication ability of the recombinant viruses, the growth 
characteristics of the six recombinant HP-PRRSVs were 
evaluated in a time-course experiment. The replication 
patterns of the recombinant HP-PRRSVs were compared 
with those of the parental virus by examining the growth 
kinetics in Marc-145 cells infected with a multiplicity of 
infection (MOI) of 0.01 PFU/cell [20]. Our results dem-
onstrated the similar patterns in growth rate and maxi-
mum titers for the parental virus and all the recombinant 
HP-PRRSVs containing the individual body TRS and 
EGFP gene inserted between the N protein and 3′-UTR 
(Figure 2), indicating that the addition of different body 
TRSs in the EGFP transcriptional unit did not affect viral 
replication.

In order to gain insight into the different effect of the 
six body TRSs of HP-PRRSV on regulation of EGFP gene 
expression, the EGFP production in virus-infected Marc-
145 cells was analyzed by western blot analysis. Different 
levels of EGFP production by the six rescued viruses con-
taining EGFP transcriptional units between the N protein 
and 3′-UTR were observed. Among them, rHP-PRRSV/
SD16/TRS2-EGFP, rHP-PRRSV/SD16/TRS5-EGFP, rHP- 
PRRSV/SD16/TRS6-EGFP and rHP-PRRSV/SD16/TRS7- 
EGFP produced higher levels of EGFP than other  
investigated recombinant viruses (Figure 3). In addition, 
quantitative comparison of EGFP expression levels in 
virus-infected Marc-145 cells were also analyzed by using 
flow cytometry (FACS Aria II; BD Bioscience) and a GFP 
Quantification Kit (BioVision, Mountain View, CA, USA) 
as previously described (data not shown) [20]. Overall, 
the fluorescent intensity measured was almost associated 
with the levels of by the western blot and EGFP fluores-
cence levels observed in virus-infected cells. On the other 
hand, insertion of an additional transcriptional unit into 
the virus genome might affect the efficient incorporation 
of structural proteins into virions [27–29]. In order to 
evaluate the potential effect of the six body TRSs on the 
expression of the viral structural proteins, the produc-
tion of the N protein was also analyzed in virus-infected 
Marc-145 cells by western blot analysis (Figure  3). No 
significant differences in N expression were detected in 
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cells infected with the different recombinant viruses and 
the parental virus. The results presented here (Figure 3) 
and our earlier findings had shown that insertion of the 
EGFP transcriptional units between N gene and 3′-UTR 
did not affect production of viral structural proteins [23–
25]. Furthermore, we determined EGFP mRNA levels in 
virus-infected Marc-145 cells by Northern blot analysis 
(Figure  4). These experiments should gain insight into 
the different effect of the six body TRSs of HP-PRRSV 
on the regulation of EGFP gene transcription. Taken 
together, a comparison of EGFP transcription levels 
between the recombinant EGFP viruses and the parental 
virus demonstrated that body TRSs of GP2, GP5, M and 
N genes showed higher levels of EGFP expression than 
TRSs of GP3 and GP4 without altering the HP-PRRSV 
replication.

Discussion
Previous studies and our own findings have suggested 
that the body TRS2 and TRS6 of PRRSV can play impor-
tant roles in the regulation of viral transcription and 
translation [19–23]. However, there have been no stud-
ies, as far as we know, that have addressed the roles of 
the other body TRSs in gene expression regulation, rep-
lication, and transcription of PRRSV because the over-
lapping genes in PRRSV genome made mutation analysis 
challenging. It is well-accepted that leader TRS and body 
TRSs are the two key elements of PRRSV transcription. 
However, the roles and efficiency of base-pairing interac-
tion between the leader TRS and different body TRSs on 
the expression of different structural proteins are not dis-
cussed in this paper due to the space limitation. Nonethe-
less, whether the distance between TRS and downstream 
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EGFPTRS7 128 nt

EGFPTRS6 24 nt

EGFPTRS5 47 nt

EGFPTRS4 236 nt

EGFPTRS3 88 nt

EGFPTRS2 27 nt

rHP-PRRSV/SD16/TRS7-EGFP

rHP-PRRSV/SD16/TRS6-EGFP

rHP-PRRSV/SD16/TRS5-EGFP

rHP-PRRSV/SD16/TRS4-EGFP

rHP-PRRSV/SD16/TRS3-EGFP

rHP-PRRSV/SD16/TRS2-EGFP

ORF 1a ORF 1b
5’ 3’

GP2a GP3 GP4 GP5 M N EGFP

GP2b GP5a

Figure 1  Schematic diagram of rHP-PRRSVs containing EGFP gene under the control of TRSs and detection of EGFP expression by 
fluorescence microscopy. A EGFP gene was under the control of the different structural genes TRSs, located upstream of the start codon of each 
structural genes and varied in length and sequence. Each transcriptional unit containing the EGFP gene and six different length TRSs of HP-PRRSV 
was inserted between the N protein and 3′-UTR in the HP-PRRSV genome. B Marc-145 cells infected with six different recombinant HP-PRRSVs 
expressing the EGFP gene were observed for CPE and fluorescence detection. Live cells were analysed by phase contrast and fluorescence micros-
copy.
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gene governs the efficiency of the transcription and (pos-
sibly) translation is the objective of our further research. 
Therefore, we report here, for the first time, only the data 
that allow comparison of the effects of body TRSs on the 
expression of a foreign gene. We generated a series of 
recombinant HP-PRRSVs expressing EGFP gene driven 
by the six individual body TRSs of each HP-PRRSV 
structural genes, respectively. Each transcriptional unit, 
including the individual body TRS and EGFP gene, was 
inserted between the N protein and 3′-UTR in a full-
length cDNA infectious clone of HP-PRRSV/SD16 strain. 
Importantly, all six recombinant HP-PRRSVs showed 
similar patterns of growth rate and maximum titers in 

comparison with the parental virus. These data indicated 
that the site between N gene and 3′-UTR can tolerate the 
addition of a foreign gene without reduction of the level 
of the viral replication.

Insertion of an additional transcriptional unit into the 
virus genome might affect the efficient incorporation of 
structural proteins into virions [27–29]. In this study, six 
recombinant HP-PRRSVs were subjected to western blot 
by measuring the ratios of the N protein and EGFP pro-
tein, respectively. The present results and our earlier data 
showed that insertion of the EGFP transcriptional units 
between N gene and 3′-UTR did not affect the incor-
poration of viral protein into the virions by measuring 
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Figure 2  In vitro replication of six rHP-PRRSVs containing EGFP gene in Marc-145 cells. In vitro replication of the recombinant HP-PRRSVs 
was evaluated in Marc-145 cells infected at an MOI of 0.01. The viral titres were determined by using the Reed–Muench method.

α-Tubulin

EGFP

N protein
Figure 3  Effect of the HP-PRRSV TRSs on EGFP expression in Marc-145 cells infected with rHP-PRRSVs. Marc-145 cells were infected at an 
MOI of 0.01 and cultured until 60% of cells showed the cytopathic effect (CPE). For western blot analysis of EGFP production, total proteins were col-
lected from virus-infected cells, electrophoresed, transferred to a polyvinylidene difluoride (PVDF) membrane, and immunostained using a mouse 
anti-GFP monoclonal antibody, anti-α-Tubulin antibody and anti-PRRSV N protein as a loading control.
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the ratios of the N protein and EGFP protein [20–22]. 
Moreover, six recombinant HP-PRRSVs were subjected 
to Northern blot analysis by measuring the ratios of the 
EGFP mRNA. Overall, the body TRSs of GP2, GP5, M 
and N genes produced the higher level of EGFP expres-
sion when this reporter gene is cloned upstream of the 
N gene and 3′-UTR, suggesting that these body TRSs at 
this position would assure effective regulation of the gene 

of interest. It is possible that HP-PRRSV has evolved to 
have unique body TRSs for each structural gene, and they 
are most effective in regulating the expression of the cor-
responding structural genes at their original positions. In 
summary, we have evaluated the role of six PRRSV body 
TRSs in expression of a foreign gene by using HP-PRRSV 
reverse genetics system. We showed that HP-PRRSV 
body TRSs have the ability to regulate gene expression, 

EGFP sgRNA

0 0.161 0.25 0.680.45 0.54Relative levels
Figure 4  Detection of EGFP mRNAs of the recombinant HP-PRRSVs using northern blot analysis. Total RNAs from Marc-145 cells infected 
with six different recombinant HP-PRRSVs expressing EGFP and the parent strain were separated on a Tris–borate–EDTA–urea-15% polyacrylamide 
gel. The gel was transferred onto a piece of membrane (Hybond N+; Amersham). The blot was UV cross-linked using a cross-linking system (HL-200 
HybriLinker; UVP), and DIG-labelled oligonucleotides were used as probes for EGFP sgRNA detection. The sequences for the probes used were as 
follows: SNB041-F, 5′-GTGAGCAAGGGCGAGGAG-3′; and SNB041-R, 5′-GTAGTGGTTGTCGGGCAGCA-3′. Numbers below the northern bands indicate 
relative levels of EGFP sgRNA of each recombinant virus compared to EGFP sgRNA of rHP-PRRSV/SD16/TRS2-EGFP. ImageJ software (NIH) was used 
to quantify the signal from the gel.
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replication, and transcription of the foreign gene at dif-
ferent levels. Moreover, our results and the previous find-
ings all indicate that the PRRSV body TRSs could be a 
useful tool for controlling foreign gene expression. Com-
pared with the expression levels of six different recombi-
nant PRRSVs expressing EGFP gene, body TRSs of GP2, 
GP5, M and N genes have shown relatively higher levels 
of EGFP expression without altering the viral replication. 
Therefore, our results provide new clues useful for the 
rational design of next generation effective PRRSV vac-
cine vectors.
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