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The potential for immunoglobulins 
and host defense peptides (HDPs) to reduce 
the use of antibiotics in animal production
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Abstract 

Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve 
local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense 
peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to anti-
biotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect 
against infections and enable the build-up of a sufficient adaptive immune response. This review describes two 
classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe 
immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active 
defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different 
modes of action, used directly, induced in situ or used as vaccine adjuvants is described.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

1  Introduction
Resistance of microbes to antimicrobial agents is a global 
threat. An increasing number of pathogenic bacteria 
has been shown to readily develop resistance against 
antibiotics (antimicrobial resistance, AMR) of differ-
ent structural classes. The continuous selective pressure 
of antibiotic residues in the environment has led to the 
generation of multi-resistant superbugs, some of which 
are resistant against every antibiotic known to mankind. 
In addition, vast amounts of antibiotics related to those 
used in human medicine are still used in animal hus-
bandry to prevent disease outbreaks, while elsewhere in 
the world antibiotics are used as growth promotors. For 
example, in Denmark two-thirds of the total prescribed 
antibiotics are used in animal production [1]. Similar fig-
ures apply throughout the EU [2, 3]. The practice of fac-
tory farming in which production animals are kept in 
high densities and numbers facilitates the generation of 
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AMR reservoirs. Currently, it is not possible to determine 
the contribution that the use of antibiotics in agriculture 
is making to the emerging nosocomial AMR. However, 
there is consensus that minimizing the use of antimicro-
bials in agriculture is essential to safeguard antimicrobi-
als for human medicine and that alternative strategies 
are needed to reduce the use of antibiotics in animal hus-
bandry. In particular infectious diseases with a mucosal 
infection component dominate the veterinary antibiotics 
demand and alternative strategies to handle such diseases 
can thus be expected to have a major impact on the total 
antibiotics usage in animal production and will be instru-
mental in achieving a significant decrease in the total 
usage (i.e. animal and human combined) of antibiotics in 
regions with large intensive animal production sectors.

As illustrated schematically in Figure 1, bacterial infec-
tions will all be treatable with antibiotics. In the animal 
production sector some will also be treatable or prevent-
able by alternative antibacterial methods such as manage-
ment measures (e.g. regarding hygiene, animal density, 
controlling environment and feed etc.) and vaccination 
[4]. However, a certain proportion will not be treatable by 
these alternative methods and for those, innate immunol-
ogy based methods described in this review may be used 
as alternatives to antibiotics. An important group of such 
“difficult” infections are infections at mucosal surfaces 
to which efficient memory immune response are noto-
riously difficult to raise by vaccination. Importantly, as 
indicated in Figure 1, a need for antibiotics will remain; 
however, the implementation of alternative methods will 
drastically reduce the consumption and frequency of use 
of antibiotics in animal production, reducing a potential 
major driver of general AMR development. It should be 
borne in mind however that, unless specific legislation is 
imposed, the implementation of any alternative method 
in the animal production sector depends heavily upon 
efficiency, ease of use and low cost. 

2 � Innate host defense mechanisms
The generalized host reactions towards infection, aimed 
at quickly containing and removing the infectious micro-
organism are collectively known as the innate host 
defense. The innate immune system is an evolutionary 
ancient part of host defense. It is present in all organ-
isms; it has a limited repertoire of defense molecules, 
and a broad specificity. This defense is accomplished by a 
highly coordinated sequence of events profoundly chang-
ing the population of cellular and soluble factors in the 
affected tissue leading to restored tissue homeostasis, ter-
minating the acute phase of the response and activating 
adaptive immune responses. Innate defense mechanisms 
include activation of local stromal and immune cells, the 
induction of cytokine and chemokine messengers and 

the resulting attraction and activation of neutrophils/het-
erophils, macrophages and natural killer (NK) cells, the 
induction of effector molecules such as enzymes, collec-
tins, acute phase proteins and host defense peptides, and, 
finally, the activation of the complement system. In addi-
tion, we define in this review maternal immunoglobulins 
acquired by offspring (passive immunity) as temporary 
innate host defense factors.

With recent discoveries of adaptive and memory 
properties of the innate immune system—so-called 
“trained innate immunity” [5]—the distinction between 
the innate and adaptive immune systems has become 
less well-defined. This presents new opportunities for 
shaping innate immunity and expands the potential of 
innate immunity based strategies. Trained immunity 
effects are established quickly (within days) and last for 
extended periods (months) and manifest themselves as a 
reprogramming of innate immune responses [6]. Exam-
ples include monocytes and macrophages treated with 
β-glucan or BCG (Bacillus Calmette–Guérin) vaccines 
becoming hyper-responsive with an increased reactivity 
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Figure 1  The outer circle represents all infectious diseases in 
livestock. A large proportion of these (namely bacterial infections) 
can be controlled by antibiotics (grey circle). Some of those can also 
be controlled by alternative methods such as management measures 
(blue circle) and/or vaccination (yellow circle). Both of these methods 
can also be used to control a number of non-bacterial infections not 
targeted by antibiotics. A significant number of bacterial infectious 
diseases still remain controllable by antibiotics only, however. We 
suggest in this review that many of these may be controlled by 
non-vaccine immune methods, which, given adequate efficiency 
and low cost may in addition be applicable to some of the infectious 
diseases that can be handled by management and/or vaccination. 
As indicated a need for antibiotics will persist. Anyhow, presently 
available alternative methods can drastically reduce their total 
consumption and their frequency of use.
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towards various, unrelated immune triggers [7]. On the 
other hand, exposure of monocytes to vitamin A renders 
them less responsive to microbial ligand stimulation [8]. 
Dendritic cells, neutrophils, NK cells and other classical 
innate immune cell types can be affected in similar ways 
by other types of pathogen associated molecular patterns 
(PAMPs) of bacteria and other microorganisms [5]. These 
effects can be observed after resolution of an infection as 
an altered reaction to a subsequent, unrelated infection 
[5] and they presumably also are the reason for the “off-
target”—effects observed as a side effect of a number 
of vaccines [6]. Some of these effects are epigenetically 
based [9] working by modifying histone accessibility and 
typically affect signal transduction pathways and/or tran-
scription factors, adaptors etc. [10]. Such mechanisms 
represent unexplored opportunities to “strengthen” 
immunity which is a desired goal of immune-based 
intervention with potential to decrease the need for anti-
biotics; however, before large scale applications in ani-
mal farming can be envisaged more needs to be known 
about basic mechanisms and especially on how specific, 
desired training effects can be achieved without leading 
to unwanted effects on innate immune reactivity in gen-
eral (Figure 2).

Well described soluble components with important 
functions in the innate immune system include cytokines 
and chemokines as well as the host defense peptides that 
are described in detail below and which are remark-
able in having both direct antibacterial effects as well as 
immunomodulatory effects on the host immune system. 
Cytokines and chemokines can be considered immune 
system “hormones” with very powerful effects both in the 
vicinity of the producer cell (auto- and paracrine action) 
and systemically (endocrine action) [11]. Some of them 

have highly specific effects such as the chemokines which 
act as chemo-attractants for neutrophil granulocytes 
while others have a surprisingly wide range of effects 
depending on the type of cell binding the cytokine (pleio-
tropic cytokines) [11]. This latter characteristic together 
with their endocrine actions (systemic effects) makes the 
use of certain cytokines as drugs challenging [12]. Even 
so, some cytokines show early promise (such as IL-22 
[13, 14]) and some have been tested successfully for 
controlling infection in production animals [15]. Thus, 
bovine G-CSF (granulocyte colony stimulating factor) 
was reported to have a significantly reducing effect on the 
number of cattle with clinical mastitis as well as on the 
absolute neutrophil counts in a herd investigation involv-
ing 211 periparturient Holstein cows and heifers given 
two doses of PEGylated (polyethylene glycol-attached) 
bovine G-CSF subcutaneously at day-7 and 1 after par-
turition [16]. One additional major factor preventing the 
further development and use of cytokines for control of 
infections in animal production is that it will be hard to 
manufacture these compounds at an efficiency/price 
ratio comparable to antibiotics at the doses needed and 
furthermore that injection-based drugs will generally be 
less acceptable to the farmers.

This review describes the anti-bacterial mechanisms 
and possibilities of use as alternatives to antibiotics of 
two types of molecules representing extremes of the 
innate immune system and two very different strate-
gies. These alternatives comprise natural immunoglobu-
lin pools obtainable in large amounts from inexpensive 
sources and intended to be used for oral administration 
(feed supplement) and host defense peptides, either 
induced in situ or administered. For a review on immu-
nomodulatory phytochemicals the reader is referred to 
the article of Lillehoj et al. in this issue.

3 � Immunoglobulins
3.1 � Immunoglobulins as innate host defense molecules
Conceptually, pre-existing immunoglobulins (antibod-
ies), which are the effector molecules of humoral immu-
nity, can be conceived as part of the innate immune 
defense as they reinforce the barriers against infection 
put up for immediate and general protection by the 
innate immune system per se. In the neonate, the innate 
selection of antibodies acquired during gestation through 
the placental blood supply or post-delivery by inges-
tion of colostrum and milk is also a part of the innate 
defense system at the mucosal surfaces of the diges-
tive tract as well as in the circulation. The total pool of 
immunoglobulins, present or readily produced by primed 
plasma cells at mucosal surfaces and in the circulation, 
shares the property of broad reactivity, across a wide 
variety of microbial pathogens with other innate host 

Figure 2  Trained innate immunity. Reprogramming of innate 
immune responses is possible by epigenetic changes induced by 
compounds like β-glucan. Host defense peptides (HDPs) may induce 
innate immune memory of monocytes and macrophages in a similar 
way and increase the threshold above which infection occurs [10]. 
Trained immunity holds promise as a new approach to decrease the 
need for antibiotics.
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defense molecules and systems. In the adult animal, the 
total immunoglobulin pool is shaped by the cumulative 
pathogen exposure experienced by the host during its 
lifetime. In the newborn, immunoglobulins are supplied 
directly by the mother. This happens in the fetal stage by 
transplacental transfer supplemented by oral intake of 
colostrum and milk after birth in animal species having 
a hemochorial placenta, including primates (Figure  3). 
In animal species with an epitheliochorial placenta (such 
as pigs and ruminants) transplacental transfer does not 
take place and the newborn animal is therefore born 
without circulating immunoglobulins which must be 
supplied by the colostrum and milk by lactation (lacto-
genic immunity) [17]. This principle is used throughout 
the animal kingdom including birds and fish in which 
passive transfer of immunity takes place in ovo, dating 
back at least 450  million years in the evolution [18]. In 
all cases the newborn is provided with the polyclonal and 
polyspecific maternal immunoglobulin pool, represent-
ing the maternal antibody repertoire induced against the 
whole spectrum of pathogens experienced by the mater-
nal host throughout her life. For transplacentally sup-
plied immunoglobulins this pool is simply an aliquot of 
the circulating pool of immunoglobulins in the maternal 
blood, while in mammals depending on colostrum and 
milk immunoglobulins the origin depends on the immu-
noglobulin type. Thus, secretory IgA (sIgA) which is the 
dominating milk immunoglobulin in primates is mainly 
produced by local plasma cells in the lymphoid mucosal 

tissue of the mammary gland. These sIgA producing 
plasma cells are part of the so-called gut-associated lym-
phoid tissue (GALT) that also extends to the gut and 
therefore reflects the antigenic specificities of antibodies 
induced in the gut. In animal species in which the domi-
nating milk immunoglobulin is IgG (e.g. pigs and cat-
tle), milk immunoglobulins are derived from circulating 
plasma cells that feed IgG into the mammary gland via 
an active Fc-receptor mediated transcytosis process that 
favors specific immunoglobulin classes and subclasses 
over others, such as IgG1 in bovine [17].

An adequate level of circulatory immunoglobulins has 
been shown to be of the utmost importance for the dis-
ease-free survival of the newborn [19, 20].

In man, the main immunoglobulin type in colostrum 
and milk is sIgA which is specialized to function at 
mucosal surfaces such as in the intestinal tract and is not 
absorbed by the gut. Conversely, in animals born without 
circulating immunoglobulins IgG is the predominating 
immunoglobulin type in colostrum and mother’s milk 
and it is transferred by Fc-receptor mediated active trans-
port from the gut to the circulation in the newborn only 
within the first 24 h after birth, where after the gut does 
not allow anymore immunoglobulin absorption. This 
ensures a very rapid (perinatal) establishment of adequate 
circulatory levels of immunoglobulins in the newborn 
providing innate protection against a broad spectrum 
of infections. Thus maternally derived immunoglobu-
lins protect the offspring until the immune system of 

Fetal stage – mother to embryo immunoglobulin transport
FISH & BIRDS         PRIMATES & RODENTS        DOG, CAT, MINK RUMINANTS, PIGS, HORSES
Ac	ve transport Ac	ve transport Limited transport No transport
/yolk sac Hemochorial Endotheliochorial Epitheliochorial

placenta placenta placenta

Neonatal stage – circula
ng immunoglobulins
IgM (fish)   IgY (birds) IgG IgG (low levels) No circula	ng Ig’s

Gut uptake: (open gut)
No No Yes (< 36 h a�er birth) Yes (< 24 h a�er birth)

fetal circula
on

placenta

maternal circula
on

Figure 3  Transfer of maternal immunoglobulin to offspring is controlled by the interface between the maternal circulation and the 
placenta (or yolk sac in fish and birds). Species having an epitheliochorial interface are born without immunoglobulin in the circulation as no 
transfer takes place during gestation (ruminants, pigs, horses). These species are dependent on uptake of immunoglobulin from the colostrum 
during the first 24 h after birth and, consequently, their intestine allows immunoglobulin passage in this period, where after it closes. In species with 
an endotheliochorial interface, neonates have obtained a low circulatory level of immunoglobulin during gestation however are also able to take 
up immunoglobulins from the gut after being born and up to a week after with the majority of the uptake happening during the first 24–36 h after 
birth. In primates and rodents, the hemochorial placenta interface allows the neonate to be born with circulating immunoglobulins and there is 
therefore no perinatal uptake through the gut of maternal immunoglobulin.
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the newborn has matured to a state where it can itself 
respond with adequate adaptive immune responses and 
build up an immunological memory of its own. In mam-
mals, maternal antibodies have been shown to persist for 
2–5 weeks in the offspring (with some variation between 
species (see Table 1 in [18]).

Immunoglobulins counteract infectious disease by a 
range of mechanisms including preventing the adhe-
sion and/or entry into host cells of bacteria and viruses, 
binding to and neutralizing extracellular toxins, enchain-
ing growth of bacteria, accelerating their clearance as 
shown for IgA [21], opsonizing bacteria i.e. tagging them 
for destruction by the complement system, and promot-
ing of antibody-dependent, cell-mediated, cytotoxicity 
against bacteria and viruses [22, 23]. Immunoglobulins 
are remarkably stable proteins, being digested slowly in 
the intestinal tract compared to other proteins, IgA being 
even more stable than IgG [17] and retaining its antigen-
binding activity even when partly degraded. Remarkably, 
bovine IgG1 has been found to be just as proteolytically 
stable as bovine IgA [24].

3.2 � Immunoglobulin strategies for control of infectious 
disease in production animals

The use of immunoglobulins for passive immunization 
has a long history in both human subjects and animals 
[25, 26]. The method is currently most often used to treat 
and/or prevent the effect of bacterial toxins, rabies virus 
post-exposure and bites and stings of toxic reptiles and 
scorpions [18]; however, the method is efficient against a 
broad range of both bacterial and viral infections [27]. A 
recent illustrative example is the treatment of Ebola virus 
infection using recombinant monoclonal antibodies (i.e. 
ZMapp [28]) and convalescent donor plasma having the 
ability to protect against disease development in human 
individuals post virus exposure [29, 30]. Immunoglobu-
lins for human use can be administered either as antise-
rum, i.e. unpurified, as antibodies purified from human 
serum pools or as purified protein from cell culture 
(monoclonal antibody based drugs, a rapidly increasing 
area of drug development), typically using intravenous or 
intramuscular routes of administration.

A big number of methods exists for producing syn-
thetic immunoglobulins and immunoglobulin derived 
molecules, for example by plant based expression, by 
viral expression, allowing administration in feed and 
upon infection with the virus, respectively. In this review 
we will purposefully focus on natural immunoglobulins, 
i.e. immunoglobulin obtained from biological fluids, 
notably blood and milk, in order to highlight the impor-
tance of these often overlooked sources of broad-spec-
trum antibodies.

Maternal vaccination has been used to protect piglets, 
lambs and calves against a variety of infectious diseases. 
Targeted pathogens include a wide variety of bacteria and 
also a number of viruses demonstrating the broad appli-
cability of the passive immunization principle in immu-
nologically immature stages such as the suckling stage 
(see [18]).

Also, as mentioned above, a number of licensed, immu-
noglobulin based products for passive immunization of 
animals exists (see Table 1, reproduced with permission 
[18]). A majority of these products is directed against 
bacterial toxins or bacteria as such; however, an equine 
IgG product for protecting horses against West Nile virus 
and a plasma product for restoring defective immuno-
globulin plasma levels in horses are also included. Inter-
estingly, many of these products are produced in another 
species than the target species, the majority is used par-
enterally and both purified and unpurified immunoglob-
ulins products are available.

Not included in this table is spray-dried plasma (SDP) 
which is widely used in some animal production sectors 
for its growth promoting effects and its ability to allevi-
ate widespread production diseases such as post weaning 
disease (PWD) in weaner piglets [31, 32]. The working 
mechanism of SDP is not fully known; however to a large 
extent it can be presumed to depend on its content of 
active immunoglobulins (approximately 20% of SDP 
dry weight is immunoglobulin) inhibiting the binding of 
pathogens to the intestinal mucosa and epithelium, as 
directly demonstrated [31]. This was further corrobo-
rated by the study by Pierce et al. [33] who demonstrated 
the growth promoting effect of SDP on early weaned pigs 
to reside in the IgG fraction, confirming that at least a 
part of the beneficial effect of SDP is due to its content of 
IgG and its action against intestinal pathogens.

Around 30% of the antibiotics used in the Danish pig 
production (which demands 75% of the veterinary use of 
antibiotics) is used to treat PWD [1]. Other big contribu-
tors to the veterinary consumption of antibiotics in Den-
mark and other regions include other intestinal diseases 
such as diarrhea in newborn and young calves.

In a series of experiments at National Veterinary Insti-
tute at the Technical University of Denmark the idea of 
targeting enteric infectious diseases such as PWD in pigs 
by oral immunoglobulin administration as a feed supple-
ment was investigated prioritizing low production costs, 
ease of use and safety, all of which are crucial for an alter-
native to antibiotics to become widely accepted and used 
by farmers. While immunoglobulin can be produced 
using recombinant expression in seeds which can be used 
as a feed supplement [34] this does not readily allow to 
obtain the broad range of specificities needed to protect 
against a wide range of pathogens at the same time, and 
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the following studies therefore focused on immunoglob-
ulin retrieved from natural sources.

First, to keep production costs low the purification 
of immunoglobulins from natural, inexpensive, eas-
ily accessible and processable sources was investigated; 
for pigs and cattle slaughterhouse blood is a relevant 
immunoglobulin source being inexpensive and renew-
able and, importantly having a high concentration (typi-
cally > 10 g/L) of immunoglobulins that must be assumed 
to have relevant specificities as long as the blood is 
sourced from the same species as intended for treatment 
and from the same epidemiological area as the target 
population. Upon slaughter one pig produces 2–3  L of 
blood which can be immediately collected and stabilized 
by addition of citrate to yield pig blood plasma. This is a 
streamlined, hygienic process put in place in most mod-
ern abattoirs and often used for producing the raw mate-
rial for spray-dried plasma (see above) [35]. For poultry 
and fish a systematic and hygienic collection of abattoir 
blood is generally not in place; however, blood is evi-
dently also in these cases a major side stream offering a 
source of highly concentrated immunoglobulin (IgY for 
poultry, tetrameric IgM for fish). Another inexpensive, 
renewable source of immunoglobulins is whey, espe-
cially of bovine origin. Whey contains roughly 0.7  g/L 

immunoglobulin, which can be purified quickly by highly 
efficient methods that are also applicable to blood plasma 
(see below). In these investigations, for reasons of cost, 
it was specifically chosen not to prepare hyperimmune 
serum or whey by active immunization of donor animals; 
however, a hyperimmunization approach is also feasi-
ble if the preferred antigenic specificity is known and if 
the cost can be kept sufficiently low. Notably, with this 
approach avian eggs present themselves as containers of 
conveniently packaged highly concentrated IgY [36]. On 
average an egg yolk contains 100–150 mg of IgY amount-
ing to at least 20 g of IgY per year per egg-laying hen [37].

Second, highly efficient methods are needed for puri-
fying optimally active immunoglobulin at relatively low 
costs from large volumes of highly complex starting 
materials such as blood plasma and whey. This calls for 
affinity-based methods in the form of industrial scale for-
mats, such as expanded bed adsorption chromatography 
as well as combined precipitation technologies such as 
affinity flocculation using polymeric ligands. Both types 
of processes employ mixed mode affinity ligands with 
proven group specific binding of immunoglobulins from 
a range of animal species [38]. These methods can be 
used to purify immunoglobulins from cattle, pigs, poul-
try and fish reaching purities in the 80% range in one 

Table 1  Licensed products for passive immunization of ruminants, horses and pigs. 

Reproduced with permission from Hedegaard et al. [18]

Product type Animal Disease prevention/
targeted pathogens

Immunoglobulin type/origin Administration 
(oral/parenteral)

E. coli specific antibodies Calves Scour Bovine colostrum IgG/IgY Oral

Antibacterial bovine serum antibodies Cattle Arcanobacterium pyogenes Bovine serum Parenteral

Calves E. coli

Sheep Mannheimia haemolytica
Pasteurella multocida
Salmonella typhimurium

Clostridial antitoxins Cattle Clostridium perfringens Equine Ig Parenteral (sc and iv)

Calves C&D

Goats Clostridium botulinum

Sheep C&B

Swine

Horses

Tetanus antitoxin Horses Tetanus Equine serum Parenteral

Cattle

Sheep

Swine

Goats

Anti-West Nile virus antibodies Horses West Nile virus Equine Ig Parenteral

Anti-endotoxin antibodies Horses Septicaemia Equine plasma from hyper-immune 
horses

Parenteral

Antibacterial plasma antibodies Horses Rhodococcus equi E. coli J-5 Equine plasma from hyper-immune 
horses

Parenteral

Equine plasma Horses Failure of passive transfer Equine plasma
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step (see e.g. [39]) with the added benefit of significantly 
reducing the concentration of any extraneous agents that 
might be present, including viruses (Hedegaard et  al. 
unpublished results).

Third, purified immunoglobulin products need to be 
formulated for controllable and easy oral dosage and for 
compatibility with automatic feeding and/or drinking 
systems. In addition, formulation should ensure optimal 
shelf life at ambient temperature and optimal resistance 
against the protein denaturing and fragmenting envi-
ronment of the gut. Last but not least, immunoglobulin 
products need to be certifiable concerning absence of 
adventitious agents, including viruses with relevance for 
pig production such as porcine circovirus type 2 (PCV2), 
porcine respiratory and reproductive syndrome virus 
(PRRSV) and porcine endemic diarrhea virus (PED).

Encouragingly, results indicated that purified por-
cine IgG (ppIgG) obtained from pooled slaughterhouse 
plasma and purified by expanded bed adsorption chro-
matography contained antibody reactivity against rel-
evant porcine bacteria (E. coli O138, E. coli F4 and E. 
coli F18, as well as Salmonella enterica Diarizonae) but 
not against an irrelevant fish bacterium (Yersinia ruck-
eri) [39]. Additionally, it was observed in an E. coli O149 
F4 challenge model in weaner piglets that piglets given 
ppIgG orally (4 g/day for 14 days) cleared the challenge 
strain faster and also had a lower proportion of entero-
bacteriaceae in their ileal microbiota upon slaughter at 
the end of the experiment than the control group that 
did not receive ppIgG [39]. No disease data are available 
from this experiment as no disease was seen after chal-
lenge and therefore a follow-up study was done in which 
disease was obtained upon challenge with the same E. 
coli type. In this experiment disease was counteracted by 
ppIgG (oral with feed, 3.8  g/day for 7  days) resulting in 
less clinical signs of diarrhea and clearance of the chal-
lenge strain just as fast as in piglets with access to feed 
supplemented with dietary zinc oxide for 10  days after 
weaning (2500  ppm) [40]. Interestingly, pre-feeding 
ppIgG for 5 days before challenge and continuing treat-
ment for a total of 15  days did not improve protection 
compared to treatment for 7  days only, starting 1  day 
before challenge (at the day of weaning). Also of interest 
was that, while numbers of fecal hemolytic bacteria were 
reduced by both zinc and ppIgG treatment compared 
to the untreated group, non-hemolytic levels remained 
unchanged [40] suggesting a minimal effect of the IgG 
treatment on the normal microbiota. This would sug-
gest that natural immunoglobulin pools do not contain 
appreciable activity directed against normal, homeostatic 
microbiota components, however this will need further 
investigations to be fully elucidated.

Preliminary work has shown some promising results 
using immunoglobulin from different sources and applied 
to other species. In a pilot experiment in which newborn 
calves were given IgG purified from bovine whey instead 
of colostrum for the first 24 h after birth the same titer of 
anti-rotavirus antibodies in the circulation was attained 
as in the control group having full access to colostrum. 
In another experiment, bovine immunoglobulin from 
whey was used as a supplement to colostrum and there-
after as a daily feed supplement for 28  days, leading to 
total IgG serum concentrations that were higher for 
the treated group at the end of the experiment (Larsen, 
Knudsen and Heegaard, unpublished). This shows that 
purified bovine IgG is readily taken up by the newborn 
calf. Also, results from this experiment suggested that 
at least some protection against disease was achieved by 
the intestinal presence of ingested IgG during the first 
month of the calf ’s life. Other preliminary results showed 
an effect on campylobacter colonization in chickens 
in a Campylobacter jejuni challenge model, using oral 
challenge and orally administered purified avian immu-
noglobulin (IgY) purified from blood (Barnhoff, Hoor-
far and Heegard unpublished). This indicates a possible 
use of the passive immunization principle to reduce the 
load of zoonotic bacteria in slaughtered animals (with 
the potential to improve product safety) for example by 
feeding immunoglobulin during a relatively short period 
prior to slaughter. These results support the concept that 
immunoglobulins with relevant activities can indeed be 
obtained from either slaughterhouse blood or milk/whey 
of non-immunized animal populations. The principle 
should be tested as a treatment or prevention option for 
other hard-to-treat enteric diseases of unknown or mul-
tifactorial infectious origin such as porcine epidemic 
diarrhea (PED), new neonatal porcine diarrhea (NNPD), 
and mink diarrhea, each of which have a major negative 
impact on production economy, and animal welfare and 
which are currently demanding the use of large amounts 
of antibiotics and/or spray dried plasma.

4 � Host defense peptides
Host defense peptides (HDPs) have an essential role in 
protecting against microbial challenges due to their pres-
ence at host–environment interfaces and broad-spec-
trum antimicrobial and immunomodulatory activities. 
Host defense peptides (HDPs) are small peptides that are 
usually less than 100 amino acid residues long, mostly 
cationic (+ 2 to + 9 for most peptides) and amphipathic 
and possess antimicrobial as well as immunomodula-
tory properties [41]. There are two HDP superfamilies, 
namely defensins that are β-sheet peptides stabilized by 
3 disulfide bridges and can be subdivided into α-, β- and 
θ-defensins based on the spacing between these cysteine 
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residues, and cathelicidins that are produced as precur-
sor proteins consisting of a signal peptide, cathelin-like 
domain and a mature bioactive peptide that is proteo-
lytically cleaved off by serine proteases [42]. Cathelicidins 
can be classified based on the structures they can adopt 
when interacting with biological membranes, i.e. 
α-helical peptides (e.g. LL-37), hairpin peptides (e.g. bac-
tenecin), extended peptides enriched in specific amino 
acids (e.g. indolicidin) [41] (Figure 4).

Although HDPs have been shown to exhibit broad-
range antimicrobial activities against Gram-negative, 
Gram-positive bacteria, fungi, parasites and viruses, 
including multidrug-resistant strains [41], their capacity 
to modulate immune cells is increasingly gaining interest. 
HDPs such as the human cathelicidin LL-37 and human 
β-defensin-3 (hBD3) have shown to activate monocytes 
and other immune cells to produce chemokines and 
cytokines [43–45] and so indirectly stimulate recruit-
ment of immune cells to the sites of infection. Due to 
their resemblance to chemokines HDPs may also directly 
attract neutrophils, monocytes, dendritic cells and T 
cells via C–C chemokine receptor type 2 or 6 (CCR2, 
CCR6) or N-formyl peptide receptor 2 (FPR2) receptors 
[46–48]. Several HDPs, including LL-37 and chicken 

cathelicidin-2 (CATH-2), have shown to be anti-inflam-
matory, capable of neutralizing lipopolysaccharide- and 
lipoteichoic acid-induced pro-inflammatory cytokine 
and nitric oxide production [49–52]. Cathelicidins [51, 
53] and defensins [54] were also found to enhance DNA-
induced activation of macrophages due to enhanced 
endocytosis of DNA-peptide complexes.

4.1 � Regulation of endogenous HDP production
A rich repertoire of HDPs is produced by epithelial cells 
at mucosal surfaces, skin and immune cells. HDPs are 
produced by different cells, but the HDP repertoire, cell 
and tissue distribution is species-specific. For instance, 
humans produce a single cathelicidin, LL-37, that is ubiq-
uitously expressed and found in epithelial cells, neutro-
phils, macrophages, dendritic cells, B cells, NK cells and 
mast cells [55], whereas chicken cathelicidin-2 seems to 
be exclusively produced by heterophils [42], the avian 
counterpart of the mammalian neutrophil. Neutrophils 
and Paneth cells are primary producers of α-defensins, 
and α-defensins are expressed to a lesser extent by mono-
cytes, lymphocytes and epithelium [55]. β-Defensins are 
expressed by epithelial cells, monocytes, macrophages, 
dendritic cells, but have also been found in heterophils 

Figure 4  Three-dimensional representations of structures of chicken cathelicidin-2 (CATH-2), human cathelicidin LL-37, human defensin 
HBD-2, xenopus magainin-2 and the immunoglobulin IgG2a. Peptide chains are colored using a color gradient ranging from blue (N-terminus) 
to red (C-terminus). CATH-2 consists of a double helix separated by a hinge region, LL-37 and magainin-2 adopt a continuous helical structure and 
HBD-2 consists of an anti-parallel β-sheet structure. The IgG2a structure consists of an Fc fragment (blue/green), two ligand-binding Fab fragments 
(orange/yellow/green and red/green) and bound polysaccharide ligands NAG-FUC-NAG-BMA-MAN-NAG-GAL-MAN-NAG (blue) and NAG-FUL-NAG-
BMA-MAN-NAG-GAL-MAN-NAG (green).
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and enteroendocrine cells [55–57]. The expression, secre-
tion and activity of HDPs are regulated in various ways, 
i.e. on the level of developmental transcription, post-
translational processing and secretion.

4.1.1 � Transcriptional control
Some HDPs are constitutively expressed, independ-
ent of microbial exposure, such as most gut α-defensins 
that are transcriptionally regulated via the Wnt path-
way, an important signaling pathway [58, 59] and cer-
tain β-defensins [60]. Other peptides, including hBD2 
(human β-defensin-2), require microbial ligands for full 
expression [60]. Transcriptional control of cathelicidins is 
cell-type specific, e.g. microbial induced upregulation in 
monocytes/macrophages and epithelial cells, while tran-
scription in neutrophils predominantly occurs at the pro-
myelocyte stage [42, 61].

4.1.2 � Post‑translational and secretion control
In humans and rodents, α-defensins are produced as 
inactive precursor proteins and stored inside granules 
in neutrophils and specialized enterocytes, so-called 
Paneth cells that are located in the intestinal crypts [59]. 
Upon recognition of microbial ligands by pattern recog-
nition receptors at the cell surface granules are released 
in the crypt lumen. Similarly, cathelicidins and defensins 
are stored as inactive precursors in a subset of granules 
in mammalian neutrophils and avian heterophils [42, 
62–64]. When recruited to a site of infection, contact 
with microbial ligands will trigger HDP release and their 
subsequent activation by serine proteases in the case 
of cathelicidins [42] and defensins depending on spe-
cies and tissue amongst others by trypsin, kallikreins or 
matrix metalloproteinase-7 (MMP-7) [65]. Mammalian 
enteric β-defensins hBD1 (human β-defensin-1), mBD1 
(mouse β-defensin-1) and mBD3 (mouse β-defensin-3) 
are constitutively produced [60] and released into the 
gut lumen where they contribute to the chemical barrier 
formed by the intestinal mucus layer. Other members of 
the α- and β-defensin families are regulated by microbial 
ligands [59, 66]. For example, Paneth cell α-defensins are 
released into the lumen through activation of intracel-
lular nucleotide-binding oligomerization domain-like 
(NOD) receptors by bacterial muramyl dipeptide (MDP) 
[65] and neutrophil release of HDPs can be triggered by 
lipopolysaccharides (LPS) [42], whereas flagellin upregu-
lates hBD2 in skin keratinocytes [67].

4.1.3 � Developmental control
Abundant cathelicidin expression is present in the skin 
of human and murine neonates and is downregulated 
ten- to 100-fold in adults [68]. In chickens, the expres-
sion of the cathelicidin, CATH-2, peaks around hatch 

[57]. The sterile surfaces of skin and mucosae are colo-
nized after birth, and alter during weaning which evokes 
a shift in the local expression of HDPs. For instance, in 
mouse intestine, the expression of the mouse cathelicidin-
related antimicrobial peptide (CRAMP), decreases, while 
cryptdin-related sequences (CRS) peptide and α-defensin 
expression increase with weaning [69]. These changes are 
important to maintain gut homeostasis as α-defensins 
have been shown to influence gut microbiota composition 
[70].

4.2 � Antimicrobial strategies involving HDPs
Several HDP-based strategies can be applied that could 
potentially lead to a reduction of the use of antibiotics 
in animal husbandry. For example, feed additives can 
be used to enhance levels of endogenous HDP expres-
sion. Alternatively, HDP expression may be enhanced via 
breed selection or transgene approaches, which will not 
be discussed in this review. A third option would be to 
use HDPs as template for the development of novel anti-
microbials and immunomodulators. Finally, HDPs may 
be used as adjuvants for augmenting particular types of 
immune responses upon vaccination.

4.2.1 � Induction of endogenous HDP production
Several substances have been shown to upregulate 
endogenous HDP production and to counteract path-
ogen-mediated HDP suppression. Therefore, dietary 
supplementation of food/feed could be used to boost 
endogenous HDP expression levels and improve the out-
come of diseases. Short-chain fatty acids propionate, 
butyrate, and isobutyrate and the flavanoid flavone are 
known to regulate colon cell differentiation and increase 
LL-37 expression in human colonocytes [71, 72]. Poly-
unsaturated fatty acids (PUFA) induce hBD-1 expression 
in these cells [73]. Similarly, butyrate analogs can induce 
defensin and cathelicidin transcription in porcine epithe-
lial cells and macrophages [74]. M. tuberculosis-mediated 
LL-37 suppression in humans could be overcome by treat-
ment with the butyrate analog phenylbutyrate and the 
vitamin D3 analog 1,25[OH]2D3 separately, while a syn-
ergistic action was observed for the combined treatment 
[75]. In addition, 1,25[OH]2D3 has also been reported to 
induce β-defensin expression in chicken peripheral blood 
mononuclear cells (PBMCs) and embryonic intestinal epi-
thelial cells [76]. Oral butyrate treatment of experimental 
Shigellosis upregulated the production of LL-37 homolog 
CAP-18 (18-kDa cationic antimicrobial protein) in rab-
bits and reduced the clinical illness and bacterial load in 
stools [77]. Similar findings were obtained for phenylbu-
tyrate against Shigellosis [78] and enteropathogenic E. 
coli associated diarrhea [79]. Sulforaphane, a phytochemi-
cal produced in cruciferous vegetables, increased hBD-2 



Page 10 of 16van Dijk et al. Vet Res  (2018) 49:68 

transcription in colonocytes [80]. The mode of action of 
sulforaphane and butyrate analog-induced HDP pro-
duction is based on inhibition of histone deacetylases 
(HDACs) leading to chromatin hyperacetylation and 
increased gene expression [71, 80]. Not surprisingly, the 
HDAC inhibitor Entinostat increased both LL-37 and 
hBD1 transcription in a human intestinal cell line. Enti-
nostat-induced LL-37 expression was mediated via the 
STAT3-HIF1α (signal transducer and activator of tran-
scription 3-hypoxia-inducible factor 1-α) pathway in vitro 
and impaired in  vivo in macrophages obtained from a 
STAT3 deficient patient [81]. A single dose of live-atten-
uated oral polio vaccine (OPV) and Bacillus Calmette–
Guérin (BCG) vaccine within 48  h of birth increased 
gut LL-37 production in infants at 6  weeks of age, pos-
sibly by OPV stimulation of T cell production of IL-17 
(interleukin-17) and IL-22, known regulators of mucosal 
LL-37 expression [82]. The adenyl cyclase agonist for-
skolin induced avian β-defensin-9 (AVBD9) expression 
in chicken crop tissue [83] and LL-37 in undifferentiated 
human mucosal epithelial cells [84], whereas in butyrate-
differentiated mucosal epithelial cells forskolin suppressed 
defensin and cathelicidin production [85] implicating a 
role for cyclic AMP in HDP regulation.

Probiotics can also be used to enhance endogenous 
expression of HDPs. Lactobacillus GG treatment of 
patients with oesophagitis was found to induce the tran-
scription of several immune-related genes including 
human α-defensin 1 (HNP1) in duodenal mucosa [86]. 
Other lactobacillus strains and E. coli Nissle 1917 flagel-
lin induced HBD-2 production in Caco-2 cells [87, 88]. In 
a 3 months-trial involving healthy children receiving Lac-
tobacillus paracasei-fermented cow’s milk compared to a 
placebo group, dietary intake of L. paracasei-fermented 
milk resulted in a net increase in fecal concentrations 
of LL-37, α-defensins (HNP1–3), and hBD2 that were 
negatively associated with the occurrence of common 
infectious diseases, respiratory tract infections and acute 
gastrointestinal infections [89]. l-Isoleucine induced 
β-defensin expression that was associated with less tis-
sue damage and lower bacterial loads [90]. Arginine and 
albumin induced hBD-1 in human colonocytes [73]. 
Branched amino acids isoleucine, leucine and valine ele-
vated the in vivo transcription of β-defensin-1, -2, -114, 
and -129 in porcine small intestine [91]. Thus, dietary 
administration is a possible route to elevate HDP pro-
duction but care should be taken that a proper balance is 
maintained to ensure homeostasis.

4.2.2 � HDP‑derived antimicrobials
Due to their broad spectrum of antimicrobial activities 
HDPs are of interest as a novel class of antimicrobials. 
Unlike conventional antibiotics which readily induce 

resistance, in many cases HDPs deploy multiple mech-
anisms to kill microbes including inhibition of cell 
division, protein synthesis and DNA replication [64, 
92]. A few species, e.g. Burkholderia spp. are highly 
resistant to the direct antimicrobial action of HDPs. 
However, co-evolution of microbes and HDPs for mil-
lennia has not led to ubiquitous resistance against 
HDPs [93]. Still several pathogens have developed 
immune evasion strategies to protect against HDPs. 
The major virulence proteins of enteric pathogens 
Vibrio cholera (cholera toxin) and enterotoxigenic E. 
coli (labile toxin) down-regulate hBD1 and LL-37 pro-
duction by intestinal epithelium [85]. Similarly, Shi-
gella, a major cause of infant mortality and morbidity 
in developing countries, is able to down-regulate LL-37 
and hBD1 in human rectal epithelium [77]. Campylo-
bacter jejuni strains, that are highly susceptible to the 
chicken CATH-2 peptide that is abundantly present in 
chicken heterophils, appear to down-regulate CATH-2 
expression as part of their immune evasion strategy 
[94]. Similarly, Mycobacterium tuberculosis infection 
of human macrophages suppresses LL-37 expression 
and autophagy-related genes at the mRNA and protein 
level [75].

Interaction between HDPs and the microbial mem-
brane is thought to occur first through electrostatic 
interaction followed by insertion of hydrophobic 
groups into the lipid bilayer and transfer in or through 
the bilayer leading to transient pore formation and 
binding to RNA, DNA and proteins. Although not 
entirely impossible, development of systematic micro-
bial resistance to HDPs is greatly hampered by the 
fact that microbes would need to reorganize their cell 
membrane composition to avoid peptide binding and 
membrane permeation. Thus, the same care and pru-
dence involved in conventional antibiotic use should 
be taken when HDPs are therapeutically used for their 
direct antimicrobial activity. Several HDP-derived pep-
tides have been tested in preclinical and clinical trials. 
Synthetic LL-37 has shown efficacy as a topical antibi-
otic for treatment of “hard-to-heal” venous leg ulcers in 
phase I/II clinical trials [95]. Analogs of bovine indoli-
cidin (Omiganan/MSI78), frog magainin 2 (Pexiganan/
MX-226/MBI-226), porcine protegrin 1 (Iseganan/
IB-367) were pursued in phase III clinical trials as a 
topical antiseptic and treatment of severe acne and 
rosacea, as topical antibiotic, and as antibiotic against 
oral mucositis in patients undergoing radiation therapy, 
and showed a similar efficacy but no advantage to exist-
ing therapies [93]. It may be concluded that the devel-
opment of HDPs as alternative antimicrobials may be 
more successful for topical rather than systemic use.
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4.2.3 � HDP‑derived immunomodulators
A most promising strategy is the use of HDPs as immu-
nomodulators. Under physiological conditions, anti-
microbial actions of HDPs may be impaired by the 
presence of salt, serum and charged molecules (gly-
cosaminoglycans (GAGs), DNA) [96], but despite this, 
HDPs have been shown to modulate immunity and 
the function of immune cells [96, 97]. An important 
feature of HDPs is their capacity to modulate the dif-
ferentiation of antigen presenting cells, such as den-
dritic cells and macrophages. Dendritic cells (DCs) 
are instrumental in coordinating an appropriate T cell 
response to infections. The environment in which DCs 
mature greatly influences their phenotype and plastic-
ity. In the presence of LL-37 differentiation of human 
peripheral blood monocytes to immature DCs resulted 
in upregulation of antigen presentation markers HLA-
DR (human leukocyte antigen-antigen D related) and 
CD86 (cluster of differentiation 86) [98], whereas LL-
37-derived mature DCs exhibited a Th1 (type 1 helper 
T cells) cytokine profile and stimulated proliferation 
of IFN-γ (interferon-γ) producing T cells [99]. The 
chicken cathelicidin CATH-2 was shown to modulate 
immune responses of chicken mononuclear phago-
cytes and induced antigen presentation [100]. LL-37 
modulation of DC differentiation was G-protein cou-
pled receptor (GPCR) mediated and occurred early in 
differentiation [99]. The presence of LL-37 during or 
after differentiation of M2-polarized macrophages (by 
macrophage colony stimulating factor, M-CSF) skewed 
macrophage polarization towards a pro-inflammatory 
phenotype upon LPS stimulation, i.e. CD163low, IL-
10low, IL12p40high [101]. LL-37 did not affect polariza-
tion of fully differentiated M1-polarized macrophages 
(by granulocyte–macrophage colony stimulating factor, 
GM-CSF), but enhanced GM-CSF-driven macrophage 
differentiation [101].

Both the α-defensin HNP-1 and the β-defensin hBD-1 
promote maturation of monocyte-derived DCs result-
ing in enhanced expression of maturation marker CD83, 
antigen presentation markers CD80, CD86, CD40, HLA-
DR and scavenger receptor CD91 that also recognize 
defensins as ligands, suggesting the existence of an auto-
crine activation loop by which defensins may amplify 
their own effects [102, 103]. Phagocytosis via integrin 
Mac-1 of Gram-negative and Gram-positive bacteria by 
macrophages could be promoted by coating bacteria with 
LL-37 [104]. HDPs may affect wound healing in several 
ways, by promoting neovascularization and angiogenesis, 
stimulating extracellular matrix proteoglycan produc-
tion, promoting re-epithelization, and managing of the 
microbial burden through their antimicrobial properties 
[105–107].

A prime example of the prophylactic use of HDP-
derived peptides is avian and fish immunomodula-
tion in ovo. Via this route biological agents are directly 
injected into the amnion fluid, which is then imbibed by 
the embryo and distributed throughout the respiratory 
and gastrointestinal tracts. The in ovo route has sev-
eral advantages: (a) the peptide concentrations that are 
used are far below MIC (minimum inhibitory concen-
tration) values, which excludes antibacterial activities 
and thus the risk of resistance development; (b) a low 
peptide dose is needed, which is beneficial from a cost 
of goods perspective; (c) in ovo vaccination of chickens 
at 18 days of embryonic development (3 days before egg 
hatch) is commonly used in the poultry industry; (d) 
this strategy creates a window of opportunity for mod-
ulation of the immune system at an early stage. Cuperus 
et al. demonstrated that in ovo prophylactic treatment 
with 1 mg/kg body weight of the d-amino acid analog 
of chicken cathelicidin-2 (DCATH-2) partially protects 
chickens against a respiratory E. coli infection 7  days 
after hatch [108], resulting in reduced mortality (30%), 
and reduced morbidity (63%) and respiratory bacterial 
load (>90% reduction) among surviving birds. Injec-
tion of fluorescently labelled DCATH-2 peptide via the 
in ovo route confirmed that DCATH-2 peptide accu-
mulated, via uptake of amnion fluid, in the lungs and 
gastrointestinal tract within 24  h post-injection (pi). 
Similarly, injection of 2.6 ng/kg DCATH-2 into the yolk 
of 0.2–1.5  h post-fertilized zebrafish embryos delayed 
infection of a lethal dose of Salmonella enteritidis 
[109]. DCATH-2 treatment of zebrafish embryos in 
the absence of infection resulted in a marked increase 
(30%) of phagocytic cells [109]. These findings show 
that immunomodulation by HDP-derived peptides may 
cross the species barrier, thus theoretically the same 
peptide could be used to boost resistance against infec-
tious diseases in multiple species.

Prophylactic application could also be done post-
natally. Innate defense regulators (IDRs) are a group 
of small immunomodulatory peptides with weak or 
no antibacterial activity that were developed using 
the bovine cathelicidin bactenecin 2a (RLARIVVIR-
VAR-NH2) as template. In  vivo efficacy has been 
demonstrated for several IDRs against an invasive 
Staphylococcus aureus and systemic E. coli infection. 
Intraperitoneal treatment of mice with 8  mg/kg IDR-
1002 (200 µg/mouse) or 4 mg/kg IDR-HH2 4 h before 
infection with Staphylococcus aureus reduced the bac-
terial load in peritoneal lavage 24 h pi and was found to 
be monocyte-dependent and associated with increased 
leukocyte recruitment and chemokine production 
[110, 111]. Similar efficacy was observed for IDR-1002 
against E. coli in this model [110].
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4.2.4 � HDPs as adjuvants for vaccines
HDPs have also gained interest as an adjunct to vac-
cines for human and veterinary applications. The role of 
adjuvants in vaccines is crucial as they augment the host 
immune response against often weakly immunogenic 
pathogen-derived antigens and are able to selectively 
bias this response towards a Th1 or Th2 response. Proper 
adjuvants and adjuvant combinations effectively enhance 
and modulate the immune response via one or more 
mechanisms such as by recruitment of immune cells to 
the administered antigen and enhance antigen presen-
tation by APCs (antigen presenting cells). The multifac-
eted immunomodulatory properties of some HDPs and 
HDP-related peptides may be used to “skew” the immune 
response in the desired direction. This was shown for 
indolicidin, a short (13 aa) bovine cathelicidin peptide. 
Immunization of mice by co-administration of OVA 
(ovalbumin) with indolicidin biased to a type 2 response 
with increased IgG1 production and number of IL-5 pro-
ducing cells, whereas co-administration with CpG-DNA 
and indolicidin at a 1:67 molar ratio augmented both 
IgG1 and IgG2a production. Addition of polyphospha-
zene (PP) during immunization with OVA/CpG-DNA/
indolicidin further increased IgG2a production by three-
fold compared to OVA/CpG-DNA/indolicidin alone, 
suggesting a more balanced immune response [112]. Sim-
ilarly, indolicidin enhanced the immune response to hen 
egg lysozyme (HEL) in cattle; re-stimulation of PBMCs 
obtained 14 days after 2nd immunization showed a higher 
number of IFN-γ secreting cells after immunization with 
HEL/CpG/indolicidin compared to HEL/CpG, whereas 
CpG addition to HEL did not. Immunization with HEL/
CpG/indolicidin/PP raised the antigen-specific humoral 
(total IgG titer in serum) and long-lasting cell-mediated 
immune responses (number of IFN-gamma secreting 
cells) [113]. Immunization of mice with pertussis toxin 
(PT), IDR-HH2 and CpG-DNA (PT/CpG/IDR-HH2) 
led to a balanced Th1/Th2 response, augmenting toxin-
associated IgG1 and IgG2a titers as well as IgA titers, 
whereas toxin alone (PT) or combined with CpG-DNA 
(PT/CpG) failed to induce a strong immune response 
[114]. Immunization with toxin and IDR-HH2 (PT/IDR-
HH2) resulted in a Th2 biased response. Oral adminis-
tration of LL-37-conjugated enhanced green fluorescent 
protein (EGFP-LL-37) to mice resulted in an enhanced 
and Th17-skewed T cell dependent antigen-specific anti-
body response without induction of oral tolerance com-
pared to mice receiving EGFP alone (EGFP), indicating 
that HDPs may be used as mucosal immune adjuvants 
[115]. These studies show that HDP-derived peptides can 
be used as an adjuvant to boost the immune response as 
well as to skew this response in the desired direction.

4.2.5 � HDPs as adjuncts in antibiotic therapy
The adjunctive use of HDPs in antibiotic therapy has been 
examined against experimental tuberculosis, systemic E. 
coli infection and cerebral malaria. M. tuberculosis (TB) 
infected mice were subcutaneously treated 15  days p.i. 
during 4 weeks, with daily doses of 25 mg/kg of the anti-
TB drugs isoniazid and rifampicin and/or a weekly dose 
of 5 µg/mouse of human neutrophil defensin-1 (HNP-1). 
Treatment with anti-TB drugs alone reduced the bacte-
rial load by approx. 1 log unit in lungs, liver and spleen, 
whereas combined therapy with anti-TB drugs and 
HNP-1 augmented reduction of bacterial loads by eight- 
to tenfold in lungs and liver and by threefold in spleen 
[116]. In another study, neutropenic mice were chal-
lenged i.p. (intraperitoneal injection) with a lethal dose of 
E. coli and treated with the β-lactam antibiotic cefepime 
(0.2 mg/kg) or with the HDP magainin 2 (2 mg/mouse) 
alone raised survival to 20% at 10  days pi compared to 
10% in control animals. Combined treatment of chal-
lenged mice with cefepime and magainin 2 raised sur-
vival to 62.5% [117]. Therapeutic efficacy of HDP-derived 
peptide IDR-1018 as adjunctive treatment for cerebral 
malaria was tested in a preclinical model in which mice 
were infected with Plasmodium berghei-infected eryth-
rocytes and on day 4 of infection were daily treated with 
anti-malarial drugs pyrimethamine and chloroquine up 
to 11  day pi [118]. Treatment with anti-malarials pro-
tected only 41% of the mice, whereas adjunctive therapy 
with a single i.v. (intravenous injection) dose of IDR-1018 
at day 4, 5 and 6 increased survival to 68%. Interest-
ingly, IDR-1018 treatment did not affect parasitemia and 
its adjunctive protection against late-stage malaria was 
linked to reduced inflammation. Currently, few immu-
nomodulatory HDP analogs are being pursued in preclin-
ical or clinical trials. In conclusion, HDPs can be used (1) 
prophylactically in ovo or postnatally, (2) as an adjuvant 
to vaccines, and (3) therapeutically as adjunct to conven-
tional antibiotics or directly as antimicrobials.

5 � Conclusions
For antibacterial products based on innate defense mol-
ecules to become attractive products as alternatives to 
antibiotics in animal husbandry it is necessary to match 
the low cost, efficiency and ease of use of traditional anti-
biotics. In addition, these products should be broadly 
applicable, have low adverse effect levels and must be 
safe, as well as being acceptable to consumers.

Development of host defense peptide-based immu-
nomodulators is a challenge, but with potentially great 
rewards. The lack of translation of in  vitro to in  vivo 
immunomodulatory activities and challenges concern-
ing choice of administration routes makes it difficult and 
laborious to optimize activities of lead peptides. The costs 
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of large-scale production of synthetic and expressed pep-
tide immunomodulators have decreased and because low 
doses are needed for immunomodulation costs of goods 
are, even for veterinary use, no major hurdle. However, 
the greatest challenge faced is getting immunomodula-
tors approved by regulatory agencies under the current 
legislation. Approved efficacy and safety tests were devel-
oped to evaluate molecules with direct antimicrobial 
activities; however, these tests are not suitable to evaluate 
immunomodulators.

In contrast, it will probably be possible to categorize 
products based on purified natural immunoglobulin 
pools for oral administration as feed supplements with 
much lower regulatory hurdles to overcome. Also, pro-
duction costs can be kept at a level that makes their large-
scale use in animal production economically feasible for 
the producers. However, challenges remain with immu-
noglobulin based products, including proving efficiency 
against relevant infections of production animals, obtain-
ing reproducible, stable and consistently active products, 
optimally formulated for action in the gut and last but 
not least to ensure the absence of unwanted agents, espe-
cially viruses in products produced from blood.

In conclusion, innate host defense mechanisms offer 
interesting modes of actions for new strategies for coun-
teracting microbial infections and disease in animal 
husbandry.

Host defense peptides offer several modes of use and—
as they have a dual mode of action—may be used with 
a low risk of inducing AMR. Likewise, immunoglobu-
lins are nature’s own multi-target anti-pathogen effector 
molecules.

These innate host defense derived molecules provide 
general and rapid protective measures against infec-
tions, delaying establishment, growth and spread of the 
infection, allowing the adaptive immune system time 
to develop highly specific and high-affinity cellular and 
humoral defenses factors taking over protection in time 
to prevent or significantly slow down disease develop-
ment. Most importantly, based on anti-bacterial mecha-
nisms tested by the evolution they must be assumed to 
carry a very low risk of inducing new classes of resistance 
traits in bacteria and therefore constitute real alternatives 
to existing antibiotics.
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